
Wrangling data with ‘tidyverse’

Dan MacLean

5/1/22

Table of contents

Motivation 5
Tidy data analysis . 6
Aim of this book . 6
Organization of this book . 6
External Resources . 6

I Background 8

1 Tidy Data 9
1.1 About this chapter . 9
1.2 Tidy data . 9
1.3 A sample tidy data set . 12

1.3.1 Class . 12
1.4 Quiz . 14

II Working with tidy data in dplyr 15

2 dplyr Verbs 16
2.1 About this chapter . 16
2.2 dplyr . 16
2.3 Pipe Syntax . 17
2.4 select() . 17

2.4.1 rename() . 21
2.5 filter() . 21

2.5.1 Comparisons . 22
2.5.2 Logical operators . 23

2.6 mutate() . 25
2.6.1 Functions in mutate() . 26
2.6.2 if_else() . 28

2.7 summarize() and group_by() . 29
2.7.1 Helpful summarize() functions . 31

2.8 arrange() . 32
2.9 Missing Values . 33

2

2.10 Quiz . 36

3 Combining Datasets 37
3.1 About this chapter . 37
3.2 Joining . 37

3.2.1 Key columns . 37
3.3 Join functions . 38

3.3.1 left_join() . 38
3.3.2 right_join() . 39
3.3.3 inner_join() . 39
3.3.4 full_join() . 39
3.3.5 Joins with no common column names 40

3.4 Binding operations . 41
3.5 Quiz . 42

4 dplyr and ggplot 43
4.1 Piping to ggplot() . 43

4.1.1 Quick bar charts . 45

III Making messy data tidy with tidyr 50

5 Tidying data 51
5.1 About this chapter . 51
5.2 tidyr . 51

5.2.1 Sample tidy datasets . 51
5.3 pivot_longer() . 53
5.4 pivot_wider() . 55
5.5 separate() . 56
5.6 unite() . 58
5.7 Quiz . 59

6 Loading data from files 60
6.1 About this chapter . 60
6.2 readr . 60

6.2.1 read_csv() . 60
6.2.2 Parser functions . 62
6.2.3 Headers and column names . 63
6.2.4 Missing values . 67

6.3 Writing Files . 67
6.4 readxl . 68

6.4.1 read_xlsx() . 68

3

Appendices 69

Prerequisites 70
Installing R . 70
Installing RStudio . 70
Installing R packages in RStudio . 70

R Fundamentals 71
About this chapter . 71
Working with R . 71
Variables . 72

Using objects and functions . 73
Bracket notation in this document . 74
Quiz . 74

Acknowledgements 75

4

Motivation

Working with data is pretty much the foundation of all science. Every field, lab, and scientist;
every research tool, machine and data type seems to have it’s own favourite way of storing,
searching, analysing, and reporting data. For the individual scientist trying to analyse some
work, this can be a practical nightmare.

If you’ve ever needed to work with any non-trivial data sets, or even tried to re-analyse an old
one, you’ll know that working with data is a massive …

Figure 1: A significant pain in the …

I think you know what I’m trying to say.

The aim of this book is to introduce you to some tools that can reduce the pain of data analysis.
The techniques here won’t get rid of all your problems - there’s no magic bullet for that, but
they will reduce them to a more manageable size.

5

The techniques themselves take a bit of getting used to - there is a learning curve. But over all
they’re a much smaller pain and are worth it especially if you’re going to re-analyse growing
datasets or do similar analysis over and over (and over) again.

Tidy data analysis

The method we’ll look it is called tidy analysis. It’s a set of ways of working that is supposed
to make datasets easier to manipulate, analyse and visualise 1. The tools for doing this in R
are encapsulated in a set of packages collectively called the tidyverse. In reality this is the
separate packages dplyr, tidyr, readr, ggplot2, tibble, and purr. We’ll get to know
some of them in this book.

Aim of this book

We don’t aim to make you an expert in, or show you every trick in the tidyverse. In honesty,
we’re only going to scratch the surface of what is available in that package. But what you do
learn should be enough to allow you a fighting chance to apply tidy, reproducible data analysis
principles to all your data sets in the future.

Organization of this book

In the first part of this book we’ll look at tools for rationally and reproducibly getting answers
from table-like datasets. We’ll look at the dplyr R package that helps you split datasets into
sub-groups, compute new data based on the data you already have, filter and reduce the data
to useful parts. This part will be especially useful for developing statistics to compare groups
and replicates and for generating plots that compare different parts of the data. In this part
we’ll work with built-in data sets

In the second part of this book, we’re going to look at ways of loading in data from external
sources and making your own data consistent, in the hope that it will help you to organize
your own data and then work on it in a reproducible, tidy fashion.

External Resources

Much of what is here is presented (sometimes in disparate fashion) in other resources. If you’re
looking for a different view on these techniques - this site R for data science by the inventor
of the tidyverse is the best place to go. It’s available as a print version too.

1See Hadley Wickham’s tidy data paper - http://vita.had.co.nz/papers/tidy-data.html

6

http://r4ds.had.co.nz/
http://vita.had.co.nz/papers/tidy-data.html

Figure 2: A smaller pain in the …

7

Part I

Background

8

1 Tidy Data

1.1 About this chapter

1. Questions:

• What is tidy data?

2. Objectives:

• Understanding data type
• Understanding tidy data structures
• Explicitly describing and checking the data structure

3. Keypoints:

• Data needs to be in a particular format for tidy data principles to work

1.2 Tidy data

There are many ways to structure data. Here are two quite common ones.

treatment A

treatment B

John Smith

11

2

Jane Doe

16

11

Mary Johnson

3

9

1

John Smith

Jane Doe

Mary Johnson

treatment A

11

16

3

treatment B

2

11

1

source: Hadley Wickham

Tables contain two things, variables and values for those variables. In these two tables there
are only three variables. treatment is one, with the values a and b . The second is ‘name’,
with three values hidden in plain sight, and the third is result which is the value of the thing
actually measured for each person and treatment.

For human reading purposes, we don’t need to state the variables explicitly, we can see them by
interpolating between the columns and rows and adding a bit of common sense. This mixing
up of variables and values across tables like this has led some to call these tables ‘messy’. A
computer finds it hard to make sense of a messy table.

Working with R is made much less difficult if we get the data into a ‘tidy’ format. This format
is distinct because each variable has its own column explicitly, like this

name

treatment

result

John Smith

a

11

Jane Doe

a

10

http://vita.had.co.nz/papers/tidy-data.pdf

16

Mary Johnson

a

3

John Smith

b

2

Jane Doe

b

11

Mary Johnson

b

1

Now each variable has a column, and each seperate observation of the data has its own row.
It is much more verbose for a human, but R can use this easily because we are now explicit
about what is called what and how it relates to everything else.

More generally put, a tidy data set should look like this, schematically.

Figure 1.1: from Garret Grolemund - http://garrettgman.github.io/tidying/

1. Each variable is in its own column
2. Each observation is in its own row
3. The value of a variable in an observation is in a single cell.

11

1.3 A sample tidy data set

Let’s use a tidy data set that comes with the tidyverse packages. The object diamonds is built
in to tidyr and can be viewed by typing its name. We’ll use the head() function to look at
the top six rows only

library(tidyverse)
head(diamonds)

A tibble: 6 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

The output tells us that this is a thing called a tibble - this is just a table like object, more
about these later. We can see the size of the tibble - 6 rows, 10 columns (this is truncated
because of head() in reality its 53940 rows long). We can see the column headings and we
can see the column type or, as this is called in R-speak, its class.

1.3.1 Class

Each of the columns has a particular type or class. Here class is either <dbl>, <ord> or
<int>. This tells us what kind of data R is in that column. It’s very important that you and
R agree about what sort of data is in each column, otherwise the operations you run can go
awry.

Thankfully there are only a few main classes to worry about

• num or int or dbl - number types
• chr - regular text
• fctr - A factor. A category or names for groups. Discrete values.
• lgl - TRUE or FALSE data. Can only have these two values.

Numeric, logical and character are pretty self explanatory. Factors need a bit more thinking
about.

12

1.3.1.1 Factors

A factor is a variable that can only take pre-known values called levels. Often these will be
experimental categories or groups. Usually you will know the values of the level before you
even start an experiment. A treatment of a plant with different chemicals could be a factor.
Its levels would be names for each treatment studied. E.G GiberellicAcid, Jasmonate or
Auxin. Note a factor isn’t restricted to describing inputs. In the same way, the sort of response
of a plant to a treatment could be a factor, so high,low, hypersensitive could all be levels
of an output factor variable in an infection assay.

A factor can have numeric-looking levels. Treatment or response can often be labelled 1, 2, 3
etc, but they are used as categories, not actual measurements or numbers in factors. If the
values can be replaced by e.g A, B, C without loss of sense, then the variable is a category and
should be encoded as a factor.

In our diamonds data set, the cut, color and clarity variables are factors - they just happen
to be a particular sort of ordered factor.

Factors are what we will group and split our data sets by. We will do statistics, plots and
comparisons based on numbers within factor levels.

1.3.1.2 Checking Class Explicitly

The tibble table-like object of our diamonds data does a good job of summarising type. R
has some commands for this too.

class() will give you the class(es) of a specific variable (we can use the $ notation to get a
single column out of a table-like object such as a tibble)

class(diamonds$cut)

[1] "ordered" "factor"

levels() will tell you all the levels of a factor

levels(diamonds$cut)

[1] "Fair" "Good" "Very Good" "Premium" "Ideal"

str() will give you a summary of whole table-like objects

str(diamonds)

13

tibble [53,940 x 10] (S3: tbl_df/tbl/data.frame)
$ carat : num [1:53940] 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
$ depth : num [1:53940] 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
$ table : num [1:53940] 55 61 65 58 58 57 57 55 61 61 ...
$ price : int [1:53940] 326 326 327 334 335 336 336 337 337 338 ...
$ x : num [1:53940] 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
$ y : num [1:53940] 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
$ z : num [1:53940] 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...

1.4 Quiz

1. How many levels in the factor color in the diamonds data?
2. Is the table below ‘tidy’?

country year type count
Afghanistan 1999 cases 745
Afghanistan 1999 population 19987071
Afghanistan 2000 cases 2666
Afghanistan 2000 population 20595360
Brazil 1999 cases 37737
Brazil 1999 population 172006362
Brazil 2000 cases 80488
Brazil 2000 population 174504898
China 1999 cases 212258
China 1999 population 1272915272
China 2000 cases 213766
China 2000 population 1280428583

3. How many variables are contained in the table - how many columns should there be for
it to be tidy?

14

Part II

Working with tidy data in dplyr

15

2 dplyr Verbs

2.1 About this chapter

1. Questions:

• How do I manipulate tidy data?

2. Objectives:

• Understanding the pipe syntax
• Working with the 6 main functions
• Overview of helper functions

3. Keypoints:

• Tidy data can be operated on with six main functions that can quickly split, apply
summaries and combine sub-groups of data

2.2 dplyr

dplyr (data plier) is a tool for manipulating datasets. As part of the tidyverse it is loaded when
you use library(tidyverse) but can be loaded on it’s own with library(dplyr). dplyr is
set up as a small grammar, it has five main verbs that help you form small ‘sentences’ to get
to your result.

The verbs are:

• select() picks variables based on their names.
• filter() picks cases based on their values.
• mutate() adds new variables that are functions of existing variables
• summarise() reduces multiple values down to a single summary.
• arrange() changes the ordering of the rows.

A sixth function group_by() allows you to operate on subsets of the data.

16

2.3 Pipe Syntax

The first argument to all these functions is the tidy table-like object (we’ll start calling these
data frames from here), so for our diamonds data set, then we use

filter(diamonds, ...) # ... stands in for other arguments

If we want to perform more than one step in series, we end up in the situation of having to
save our result with a new name and working from there. This gets cumbersome quickly…

diamonds2 <- filter(diamonds, ...)
diamonds3 <- select(diamonds2, ...)
diamonds4 <- mutate(diamonds3, ...)

To avoid this, there is a pipe operator - %>%. The purpose of the pipe is to take the thing on
its left, and use it as the first argument of the thing on its right. So we can change that mess
to

diamonds %>% filter(...) %>% select(...) %>% mutate(...)

Which is much more readable. Further we can put the right hand side of the pipe on a new
line, such that we can get a very easy to read pattern.

diamonds %>%
filter(...) %>%
select(...) %>%
mutate(...)

If you want to save the result, you’ll just put the usual assign at the top

filtered_diamonds <-
diamonds %>%
filter(...) %>%
select(...) %>%
mutate(...)

2.4 select()

select() is probably the simplest verb. It lets you select whole columns from the dataframe,
discarding others. This is most useful for working with huge datasets of many columns, or for
extracting bits for ease of printing or presentation.

17

diamonds %>%
select(carat, cut)

A tibble: 53,940 x 2
carat cut
<dbl> <ord>

1 0.23 Ideal
2 0.21 Premium
3 0.23 Good
4 0.29 Premium
5 0.31 Good
6 0.24 Very Good
7 0.24 Very Good
8 0.26 Very Good
9 0.22 Fair
10 0.23 Very Good
... with 53,930 more rows

Shorthands include the : which lets you choose a range and - which can be read as except
so leaves out the columns you state

diamonds %>%
select(depth:price)

A tibble: 53,940 x 3
depth table price
<dbl> <dbl> <int>

1 61.5 55 326
2 59.8 61 326
3 56.9 65 327
4 62.4 58 334
5 63.3 58 335
6 62.8 57 336
7 62.3 57 336
8 61.9 55 337
9 65.1 61 337
10 59.4 61 338
... with 53,930 more rows

18

diamonds %>%
select(-x, -y, -z)

A tibble: 53,940 x 7
carat cut color clarity depth table price
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int>

1 0.23 Ideal E SI2 61.5 55 326
2 0.21 Premium E SI1 59.8 61 326
3 0.23 Good E VS1 56.9 65 327
4 0.29 Premium I VS2 62.4 58 334
5 0.31 Good J SI2 63.3 58 335
6 0.24 Very Good J VVS2 62.8 57 336
7 0.24 Very Good I VVS1 62.3 57 336
8 0.26 Very Good H SI1 61.9 55 337
9 0.22 Fair E VS2 65.1 61 337
10 0.23 Very Good H VS1 59.4 61 338
... with 53,930 more rows

You can select columns with helpers,

• starts_with()
• ends_with()
• contains()
• num_range()

Here are examples.

diamonds %>%
select(starts_with("c"))

A tibble: 53,940 x 4
carat cut color clarity
<dbl> <ord> <ord> <ord>

1 0.23 Ideal E SI2
2 0.21 Premium E SI1
3 0.23 Good E VS1
4 0.29 Premium I VS2
5 0.31 Good J SI2
6 0.24 Very Good J VVS2
7 0.24 Very Good I VVS1
8 0.26 Very Good H SI1

19

9 0.22 Fair E VS2
10 0.23 Very Good H VS1
... with 53,930 more rows

diamonds %>%
select(ends_with("e"))

A tibble: 53,940 x 2
table price
<dbl> <int>

1 55 326
2 61 326
3 65 327
4 58 334
5 58 335
6 57 336
7 57 336
8 55 337
9 61 337
10 61 338
... with 53,930 more rows

diamonds %>%
select(contains("l"))

A tibble: 53,940 x 3
color clarity table
<ord> <ord> <dbl>

1 E SI2 55
2 E SI1 61
3 E VS1 65
4 I VS2 58
5 J SI2 58
6 J VVS2 57
7 I VVS1 57
8 H SI1 55
9 E VS2 61
10 H VS1 61
... with 53,930 more rows

20

2.4.1 rename()

Often when you’re selecting columns to work on, you’ll need to fix the names - rename() is
useful for this. Let’s fix that mis-spelled column

diamonds %>%
rename(colour = color)

A tibble: 53,940 x 10
carat cut colour clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 53,930 more rows

2.5 filter()

The filter() function lets you select rows (observations) from your data frame based on
criteria you specify. Here I’ll look for all rows with a value of G for the color variable (I’ll also
pipe the output to the head() function to view just the top of the output.)

diamonds %>%
filter(color == "G")

A tibble: 11,292 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Very Good G VVS2 60.4 58 354 3.97 4.01 2.41
2 0.23 Ideal G VS1 61.9 54 404 3.93 3.95 2.44
3 0.28 Ideal G VVS2 61.4 56 553 4.19 4.22 2.58
4 0.31 Very Good G SI1 63.3 57 553 4.33 4.3 2.73
5 0.31 Premium G SI1 61.8 58 553 4.35 4.32 2.68

21

6 0.24 Premium G VVS1 62.3 59 554 3.95 3.92 2.45
7 0.7 Ideal G VS2 61.6 56 2757 5.7 5.67 3.5
8 0.78 Very Good G SI2 63.8 56 2759 5.81 5.85 3.72
9 0.74 Ideal G SI1 61.6 55 2760 5.8 5.85 3.59
10 0.75 Premium G VS2 61.7 58 2760 5.85 5.79 3.59
... with 11,282 more rows

The syntax is fairly clear, just pass the column you want to think about and the condition to
keep the rows. Multiple conditions can be used and all must be true to keep a row.

diamonds %>%
filter(color == "G",

cut == "Ideal")

A tibble: 4,884 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal G VS1 61.9 54 404 3.93 3.95 2.44
2 0.28 Ideal G VVS2 61.4 56 553 4.19 4.22 2.58
3 0.7 Ideal G VS2 61.6 56 2757 5.7 5.67 3.5
4 0.74 Ideal G SI1 61.6 55 2760 5.8 5.85 3.59
5 0.75 Ideal G SI1 62.2 55 2760 5.87 5.8 3.63
6 0.71 Ideal G VS2 62.4 54 2762 5.72 5.76 3.58
7 0.64 Ideal G VVS1 61.9 56 2766 5.53 5.56 3.43
8 0.71 Ideal G VS2 61.9 57 2771 5.73 5.77 3.56
9 0.58 Ideal G VVS1 61.5 55 2772 5.39 5.44 3.33
10 0.72 Ideal G SI1 61.8 56 2776 5.72 5.75 3.55
... with 4,874 more rows

To make more complex queries, you’ll need to combine comparisons and logical operators.

2.5.1 Comparisons

R provides the following comparison operators

• == - strictly equal to
• != - not equal to
• >, <, >=, <= - greater than, less than, greater or equal to, less or equal to

These all work as you might expect. Except for ==. Trying to use == on numbers with a
decimal point is tricky because of rounding errors in the computer. See this:

22

(1 / 49) * 49 == 1

[1] FALSE

This statement is asking ‘is 1 divided by 49, multiplied by 49, equal to 1’. The computer says
FALSE because the computer can’t store infinite numbers of decimal places. The rounding
error is extremely small (down to the last 16th decimal place) but it is there. To deal with
this rounding error we use the near() function, which checks numbers are the same to about
the 8th decimal place.

near((1 / 49) * 49, 1)

[1] TRUE

2.5.2 Logical operators

filter() uses combinations of R logical operators, these are & for and, | for or and ! for not.
You can build filters with these. Let’s modify our query to find color G or cut ideal.

diamonds %>%
filter(color == "G" | cut == "Ideal")

A tibble: 27,959 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.23 Ideal J VS1 62.8 56 340 3.93 3.9 2.46
3 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
4 0.3 Ideal I SI2 62 54 348 4.31 4.34 2.68
5 0.23 Very Good G VVS2 60.4 58 354 3.97 4.01 2.41
6 0.33 Ideal I SI2 61.8 55 403 4.49 4.51 2.78
7 0.33 Ideal I SI2 61.2 56 403 4.49 4.5 2.75
8 0.33 Ideal J SI1 61.1 56 403 4.49 4.55 2.76
9 0.23 Ideal G VS1 61.9 54 404 3.93 3.95 2.44
10 0.32 Ideal I SI1 60.9 55 404 4.45 4.48 2.72
... with 27,949 more rows

Note that the computer doesn’t read this like it’s English. Consider this

23

diamonds %>%
filter(color == "G" | "F")

You might consider this to read filter rows with color column equal toGorF‘. The com-
puter doesn’t read it like this. It needs more explicit statements

diamonds %>%
filter(color == "G" | color == "F")

A tibble: 20,834 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.22 Premium F SI1 60.4 61 342 3.88 3.84 2.33
2 0.23 Very Good G VVS2 60.4 58 354 3.97 4.01 2.41
3 0.23 Very Good F VS1 60.9 57 357 3.96 3.99 2.42
4 0.23 Very Good F VS1 60 57 402 4 4.03 2.41
5 0.23 Very Good F VS1 59.8 57 402 4.04 4.06 2.42
6 0.23 Good F VS1 58.2 59 402 4.06 4.08 2.37
7 0.29 Premium F SI1 62.4 58 403 4.24 4.26 2.65
8 0.24 Very Good F SI1 60.9 61 404 4.02 4.03 2.45
9 0.23 Ideal G VS1 61.9 54 404 3.93 3.95 2.44
10 0.28 Ideal G VVS2 61.4 56 553 4.19 4.22 2.58
... with 20,824 more rows

Which can be cumbersome if you want to filter on one of many possible values. For that reason
we have %in% , which works like

diamonds %>%
filter(color %in% c("G", "F"))

A tibble: 20,834 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.22 Premium F SI1 60.4 61 342 3.88 3.84 2.33
2 0.23 Very Good G VVS2 60.4 58 354 3.97 4.01 2.41
3 0.23 Very Good F VS1 60.9 57 357 3.96 3.99 2.42
4 0.23 Very Good F VS1 60 57 402 4 4.03 2.41
5 0.23 Very Good F VS1 59.8 57 402 4.04 4.06 2.42
6 0.23 Good F VS1 58.2 59 402 4.06 4.08 2.37
7 0.29 Premium F SI1 62.4 58 403 4.24 4.26 2.65
8 0.24 Very Good F SI1 60.9 61 404 4.02 4.03 2.45

24

9 0.23 Ideal G VS1 61.9 54 404 3.93 3.95 2.44
10 0.28 Ideal G VVS2 61.4 56 553 4.19 4.22 2.58
... with 20,824 more rows

You can select anything not in a list given to %in% with a judicious ! (not), again this is a bit
weird if you translate directly from English, as the not goes first.

diamonds %>%
filter(! color %in% c("G", "F"))

A tibble: 33,106 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 33,096 more rows

2.6 mutate()

The mutate() function lets you add new columns based on values in other columns. Note that
doing so to this data set makes it too big to print, so I’ll select() the appropriate columns.

diamonds %>%
mutate(price_per_carat = price / carat) %>%
select(price, carat, price_per_carat)

A tibble: 53,940 x 3
price carat price_per_carat
<int> <dbl> <dbl>

1 326 0.23 1417.
2 326 0.21 1552.

25

3 327 0.23 1422.
4 334 0.29 1152.
5 335 0.31 1081.
6 336 0.24 1400
7 336 0.24 1400
8 337 0.26 1296.
9 337 0.22 1532.
10 338 0.23 1470.
... with 53,930 more rows

You can refer to columns straight after creating them, so you can minimise mutate()s

diamonds %>%
mutate(price_per_carat = price / carat,

depth_per_ppc = depth / price_per_carat) %>%
select(depth_per_ppc, price_per_carat)

A tibble: 53,940 x 2
depth_per_ppc price_per_carat

<dbl> <dbl>
1 0.0434 1417.
2 0.0385 1552.
3 0.0400 1422.
4 0.0542 1152.
5 0.0586 1081.
6 0.0449 1400
7 0.0445 1400
8 0.0478 1296.
9 0.0425 1532.
10 0.0404 1470.
... with 53,930 more rows

2.6.1 Functions in mutate()

You can create a new column with mutate() using pretty much any vectorized R function. It’s
a bit complicated to explain what I mean by ‘vectorized’ so let’s start with some examples.

diamonds %>%
mutate(log_price = log(price)) %>%
select(-x, -y, -z)

26

A tibble: 53,940 x 8
carat cut color clarity depth table price log_price
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 5.79
2 0.21 Premium E SI1 59.8 61 326 5.79
3 0.23 Good E VS1 56.9 65 327 5.79
4 0.29 Premium I VS2 62.4 58 334 5.81
5 0.31 Good J SI2 63.3 58 335 5.81
6 0.24 Very Good J VVS2 62.8 57 336 5.82
7 0.24 Very Good I VVS1 62.3 57 336 5.82
8 0.26 Very Good H SI1 61.9 55 337 5.82
9 0.22 Fair E VS2 65.1 61 337 5.82

10 0.23 Very Good H VS1 59.4 61 338 5.82
... with 53,930 more rows

diamonds %>%
mutate(total_price = sum(price)) %>%
select(-x, -y, -z)

A tibble: 53,940 x 8
carat cut color clarity depth table price total_price
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <int>

1 0.23 Ideal E SI2 61.5 55 326 212135217
2 0.21 Premium E SI1 59.8 61 326 212135217
3 0.23 Good E VS1 56.9 65 327 212135217
4 0.29 Premium I VS2 62.4 58 334 212135217
5 0.31 Good J SI2 63.3 58 335 212135217
6 0.24 Very Good J VVS2 62.8 57 336 212135217
7 0.24 Very Good I VVS1 62.3 57 336 212135217
8 0.26 Very Good H SI1 61.9 55 337 212135217
9 0.22 Fair E VS2 65.1 61 337 212135217
10 0.23 Very Good H VS1 59.4 61 338 212135217
... with 53,930 more rows

Observe how the same number is in all the rows in the last example, this highlights how this
‘vectorized’ function idea works.

Briefly, vectorized functions work on whole columns at a time, not just single rows. So if
it makes sense to treat each element of the column individually, the function will do that.
Consider this column (here printed on its side) with the log() function.

27

log(c(1,2,3))

[1] 0.0000000 0.6931472 1.0986123

You get back a column of numbers the same length as you put in, each item logged. With the
sum() function it makes sense to return the sum of all the numbers in the column.

sum(c(1,2,3))

[1] 6

So you get back a single number. The behaviour of mutate() then is akin to taking the whole
column or columns you specify, apply whatever function you ask for and putting the resulting
column in the dataframe. If the resulting column is of length one, that just gets repeated until
it fits. That is why we get repeats of the same number in the sum() example and why that
number is the sum of all the prices.

If the result from the function isn’t the same length as the column or has length of one - the
function will fail. Most common functions will work nicely though.

2.6.2 if_else()

One final vectorized function is if_else(), this is useful when you want to add a column that
annotates the data with an arbitrary value based on values. Let’s add a column called cost
that can be high or low depending on the price.

diamonds %>%
mutate(cost = if_else(price > 335, "high", "low")) %>%
select(-x, -y, -z)

A tibble: 53,940 x 8
carat cut color clarity depth table price cost
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <chr>

1 0.23 Ideal E SI2 61.5 55 326 low
2 0.21 Premium E SI1 59.8 61 326 low
3 0.23 Good E VS1 56.9 65 327 low
4 0.29 Premium I VS2 62.4 58 334 low
5 0.31 Good J SI2 63.3 58 335 low
6 0.24 Very Good J VVS2 62.8 57 336 high

28

7 0.24 Very Good I VVS1 62.3 57 336 high
8 0.26 Very Good H SI1 61.9 55 337 high
9 0.22 Fair E VS2 65.1 61 337 high
10 0.23 Very Good H VS1 59.4 61 338 high
... with 53,930 more rows

The if_else() function then just adds the first value (“high”) if the condition is ‘true’ else it
puts the second value.

2.7 summarize() and group_by()

The summarize() function is a reductive function. It reduces entire dataframes to a single
row, and returns an entirely new dataframe.

diamonds %>%
summarize(mean_price = mean(price))

A tibble: 1 x 1
mean_price

<dbl>
1 3933.

summarize() is best used with group_by() which helps split dataframes into subsets. The
summarize() function will run once for each subset created by group_by(). Let’s find the
mean price for every colour of diamonds. We’ll do this by grouping the diamonds dataframe
on color, then summarising.

diamonds %>%
group_by(color) %>%
summarize(mean_price = mean(price))

A tibble: 7 x 2
color mean_price
<ord> <dbl>

1 D 3170.
2 E 3077.
3 F 3725.
4 G 3999.
5 H 4487.

29

6 I 5092.
7 J 5324.

This is where the power of dplyr starts to be obvious. Once we’ve got our dataframe into
shape with the select(), filter() and mutate() functions, we can start to compute new
information with group_by() and summarize() and some of the helper functions.

Let’s group by two things, color and cut, and get the mean and standard deviation of
price.

diamonds %>%
group_by(color, cut) %>%
summarize(

mean_price = mean(price),
sd = sd(price)
)

`summarise()` has grouped output by 'color'. You can override using the
`.groups` argument.

A tibble: 35 x 4
Groups: color [7]

color cut mean_price sd
<ord> <ord> <dbl> <dbl>

1 D Fair 4291. 3286.
2 D Good 3405. 3175.
3 D Very Good 3470. 3524.
4 D Premium 3631. 3712.
5 D Ideal 2629. 3001.
6 E Fair 3682. 2977.
7 E Good 3424. 3331.
8 E Very Good 3215. 3408.
9 E Premium 3539. 3795.
10 E Ideal 2598. 2956.
... with 25 more rows

Note how every combination of color and cut is made into subsets.

30

2.7.1 Helpful summarize() functions

There are numerous helpful summary functions. We’ve already seen mean() , sum() and
sd().

The function n() counts the number of items in a group. It doesn’t need a column name to
work on.

diamonds %>%
group_by(color) %>%
summarize(

count = n()
)

A tibble: 7 x 2
color count
<ord> <int>

1 D 6775
2 E 9797
3 F 9542
4 G 11292
5 H 8304
6 I 5422
7 J 2808

Related is n_distinct() which counts the number of unique values in a group. This one needs
to know which column of things you want to use. Let’s see how many observations there are
for each cut and how many different colors are observed in each cut

diamonds %>%
group_by(cut) %>%
summarize(

items = n(),
unique_colors = n_distinct(color)
)

A tibble: 5 x 3
cut items unique_colors
<ord> <int> <int>

1 Fair 1610 7
2 Good 4906 7

31

3 Very Good 12082 7
4 Premium 13791 7
5 Ideal 21551 7

There are other helpful summary functions, here’s a non-exhaustive list

• max() or min() - maximum or minimum value in a column
• median() - median value in a column
• IQR() - interquartile range (distance) between 25th and 75th percentile
• first() or last() - first or last values in a column

2.8 arrange()

The arrange() function is a straightforward function that helps you arrange the final table
from summarize() a bit more nicely. It simply orders the rows in a way that you specify.

diamonds %>%
arrange(price)

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 53,930 more rows

To sort biggest first, use desc()

diamonds %>%
arrange(desc(price))

32

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 2.29 Premium I VS2 60.8 60 18823 8.5 8.47 5.16
2 2 Very Good G SI1 63.5 56 18818 7.9 7.97 5.04
3 1.51 Ideal G IF 61.7 55 18806 7.37 7.41 4.56
4 2.07 Ideal G SI2 62.5 55 18804 8.2 8.13 5.11
5 2 Very Good H SI1 62.8 57 18803 7.95 8 5.01
6 2.29 Premium I SI1 61.8 59 18797 8.52 8.45 5.24
7 2.04 Premium H SI1 58.1 60 18795 8.37 8.28 4.84
8 2 Premium I VS1 60.8 59 18795 8.13 8.02 4.91
9 1.71 Premium F VS2 62.3 59 18791 7.57 7.53 4.7
10 2.15 Ideal G SI2 62.6 54 18791 8.29 8.35 5.21
... with 53,930 more rows

2.9 Missing Values

Many (many!) datasets will have some missing values at some points. These are encoded in
R as NA. They need to be dealt with explicitly as they mess up lots of calculations.

Look at the toy dataframe incomplete below

incomplete

group size
1 A 10.4
2 B NA
3 C 8.0
4 A 6.0
5 B NA
6 C NA

When we try to summarize() we get stuck

incomplete %>%
group_by(group) %>%
summarize(mean_size = mean(size))

A tibble: 3 x 2
group mean_size

33

<chr> <dbl>
1 A 8.2
2 B NA
3 C NA

The groups with any NA can’t be calculated. We need to tell our helper function to remove NA
before we work with it.

incomplete %>%
group_by(group) %>%
summarize(mean_size = mean(size, na.rm = TRUE))

A tibble: 3 x 2
group mean_size
<chr> <dbl>

1 A 8.2
2 B NaN
3 C 8

This works! Though because the group B only had NA in it the formula for mean fails because
we can’t divide by 0 and we get NaN (not a number).

You might think you can use filter() to get rid of any rows with NA in, but you get a weird
result

incomplete %>%
filter(size != NA) %>%
group_by(group) %>%
summarize(mean_size = mean(size))

A tibble: 0 x 2
... with 2 variables: group <chr>, mean_size <dbl>

By definition NA means Not available, which is a nice way of saying don't know, so, strictly,
x == NA means “is x equal to something we don’t know the value of?” To which the answer
can only be don't know, for which R uses NA. The result is that any comparison with NA in it
is NA. filter() doesn’t know whether any row passes so throws it out. You get no rows for
group_by() to group.

If you want to check something is an NA, you can use is.na()

34

incomplete %>%
filter(! is.na(size)) %>%
group_by(group) %>%
summarize(mean_size = mean(size))

A tibble: 2 x 2
group mean_size
<chr> <dbl>

1 A 8.2
2 C 8

Note that you lose the information for the B group, which may be important.

You may want to pair these operations with an n() column to give you an idea of how many
values you use to get your answer.

incomplete %>%
group_by(group) %>%
summarize(

mean_size = mean(size, na.rm = TRUE),
sample_size = n()
)

A tibble: 3 x 3
group mean_size sample_size
<chr> <dbl> <int>

1 A 8.2 2
2 B NaN 2
3 C 8 2

incomplete %>%
filter(! is.na(size)) %>%
group_by(group) %>%
summarize(mean_size = mean(size),

sample_size = n()

)

A tibble: 2 x 3
group mean_size sample_size

35

<chr> <dbl> <int>
1 A 8.2 2
2 C 8 1

With a more complicated call, you can explicitly get the number of NAs.

incomplete %>%
group_by(group) %>%
summarize(

mean_size = mean(size, na.rm = TRUE),
sample_size = n(),
nas = sum(is.na(size))
)

A tibble: 3 x 4
group mean_size sample_size nas
<chr> <dbl> <int> <int>

1 A 8.2 2 0
2 B NaN 2 2
3 C 8 2 1

2.10 Quiz

1. Load the package nycflights13 which is a tidy data set of flight information out of New
York. Look at the flights table that has been loaded and note the column names and
types.

2. The individual planes are identified by their tailnum. Which plane has the worst on-time
record?

3. What time of day should you fly to avoid delays as much as possible?

4. For each destination compute the total minutes of delay?

5. Find all destinations that have at least two carriers.

(These exercises are taken from pg 75 of R for Data Science - check there for more challenges.)

36

http://r4ds.had.co.nz/

3 Combining Datasets

3.1 About this chapter

1. Questions:

• How do I combine dataframes?

2. Objectives:

• Understanding keys
• Explore join functions

3. Keypoints:

• Dataframes get joined on key columns. The rows that are retained depends on the type
of join performed

3.2 Joining

Often you will want to combine data contained in more than one dataset. In this section we
will look at the functions that help you do that.

3.2.1 Key columns

The joining operation depends on the two datasets having some values in some column in
common. The column in each dataset that allows you to combine columns is the key column.
Consider these dataframes

band_members

37

A tibble: 3 x 2
name band
<chr> <chr>

1 Mick Stones
2 John Beatles
3 Paul Beatles

band_instruments

A tibble: 3 x 2
name plays
<chr> <chr>

1 John guitar
2 Paul bass
3 Keith guitar

Note that the two dataframes have a column in common name.

3.3 Join functions

Join functions work to combine two dataframes side-by-side in some way. Usually they use
one column as a base and add columns to that one from the other.

3.3.1 left_join()

The most common sort of join is the left join. This takes one dataframe, considers it to be
on the left of the join and combines the second dataframe on to it, skipping rows in the right
dataframe that have nowhere to join

left_join(band_members, band_instruments,)

Joining, by = "name"

A tibble: 3 x 3
name band plays
<chr> <chr> <chr>

1 Mick Stones <NA>
2 John Beatles guitar
3 Paul Beatles bass

38

Note how the column in common name is used as the key through which to join and that
the band_member Keith goes missing because it isn’t in the left dataframe, which is the
reference.

3.3.2 right_join()

right_join() is the complementary function.

right_join(band_members, band_instruments)

Joining, by = "name"

A tibble: 3 x 3
name band plays
<chr> <chr> <chr>

1 John Beatles guitar
2 Paul Beatles bass
3 Keith <NA> guitar

See how this time Keith is retained as we’re joining to the right table as the base, but as he
has no entry in the left table, an NA is used to fill the missing value.

3.3.3 inner_join()

inner_join() keeps only rows that are completely shared

inner_join(band_members, band_instruments)

Joining, by = "name"

A tibble: 2 x 3
name band plays
<chr> <chr> <chr>

1 John Beatles guitar
2 Paul Beatles bass

3.3.4 full_join()

full_join() joins all rows as well as possible, generating NA as appropriate.

39

full_join(band_members, band_instruments)

Joining, by = "name"

A tibble: 4 x 3
name band plays
<chr> <chr> <chr>

1 Mick Stones <NA>
2 John Beatles guitar
3 Paul Beatles bass
4 Keith <NA> guitar

3.3.5 Joins with no common column names

What can we do when there is no common column names? Consider this variant of band
instruments

band_instruments2

A tibble: 3 x 2
artist plays
<chr> <chr>

1 John guitar
2 Paul bass
3 Keith guitar

The name column is called artist - we can join by explicitly stating the column to join by

left_join(band_members, band_instruments2, by = c("name" = "artist"))

A tibble: 3 x 3
name band plays
<chr> <chr> <chr>

1 Mick Stones <NA>
2 John Beatles guitar
3 Paul Beatles bass

40

3.4 Binding operations

These allow you to paste dataframes together.

bind_rows() sticks them together top-to-bottom.

bind_rows(band_members, band_members)

A tibble: 6 x 2
name band
<chr> <chr>

1 Mick Stones
2 John Beatles
3 Paul Beatles
4 Mick Stones
5 John Beatles
6 Paul Beatles

Note the column names need not be identical for this to work. NAs are propogated as re-
quired.

bind_rows(band_members, band_instruments)

A tibble: 6 x 3
name band plays
<chr> <chr> <chr>

1 Mick Stones <NA>
2 John Beatles <NA>
3 Paul Beatles <NA>
4 John <NA> guitar
5 Paul <NA> bass
6 Keith <NA> guitar

bind_cols() sticks dataframes together side-by-side/

bind_cols(band_members, band_instruments)

New names:
* `name` -> `name...1`
* `name` -> `name...3`

41

A tibble: 3 x 4
name...1 band name...3 plays
<chr> <chr> <chr> <chr>

1 Mick Stones John guitar
2 John Beatles Paul bass
3 Paul Beatles Keith guitar

Note how it doesn’t do any sensible matching - it’s just pasting them together. Repeated
column names get modified. What happens if the dataframes aren’t of equal length?

data_4_rows <- tibble(names = letters[1:4], values = 1:4)
bind_cols(band_members, data_4_rows)

Error in `bind_cols()`:
! Can't recycle `..1` (size 3) to match `..2` (size 4).

3.5 Quiz

The quiz for this section is mixed in with the quiz for section 5. When you get that far, do
the quiz there.

42

4 dplyr and ggplot

1. Questions:

• How do I explore data graphically?

2. Objectives:

• Using filter() and group_by() to subset and scale data
• Using summarize() to get graphical summaries

3. Keypoints:

• Piping filtered or summarized data to ggplot2() can give quick graphical readouts of
data.

4.1 Piping to ggplot()

The pipe operator %>% we used earlier can be used with ggplot() commands to give us a
graphical view of our data. Lets try the diamonds data

diamonds %>%
ggplot() + aes(x = carat, y = price) + geom_point()

43

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

So, let’s look at that messy bottom left corner, from 0 - 1 in carat and less than 5000 in price.
A filter() should sort us out

diamonds %>%
filter(carat < 1, price < 5000) %>%
ggplot() + aes(x = carat, y = price) + geom_point()

44

1000

2000

3000

4000

5000

0.2 0.4 0.6 0.8 1.0
carat

pr
ic

e

It’s easier to do this sort of zooming and filtering with dplyr than it is by setting ggplot
axes.

4.1.1 Quick bar charts

dplyr also provides a quick way to make bar charts in ggplot. Although bar charts are
generally far less use than jitter or scatter plots, lots of supervisors like them. Which is a
shame.

We need to run group_by() and summary() and send it to ggplot’s geom_bar().

diamonds %>%
group_by(cut) %>%
summarize(mean_price = mean(price)) %>%
ggplot() + aes(x = cut, y = mean_price) + geom_bar(stat="identity")

45

0

1000

2000

3000

4000

Fair Good Very Good Premium Ideal
cut

m
ea

n_
pr

ic
e

The stat = "identity" call tells ggplot to use the values passed (default behaviour is to do
a count, which is a bit unexpected).

Error bars can be added by calculating the error on each group and adding it in to the table,
then using the geom_errorbar() geom from ggplot. We’ll use the standard deviation from
the sd() function, though any error can be used.

diamonds %>%
group_by(cut) %>%
summarise(

mean_price = mean(price),
sd_price = sd(price)
) %>%
ggplot() +

aes(x = cut, y = mean_price) +
geom_bar(stat="identity") +
geom_errorbar(

aes(
ymin = mean_price - sd_price,
ymax = mean_price + sd_price
)

)

46

0

2500

5000

7500

Fair Good Very Good Premium Ideal
cut

m
ea

n_
pr

ic
e

It is helpful to look at the output from the dplyr bit to see what’s going on here.

diamonds %>%
group_by(cut) %>%
summarise(

mean_price = mean(price),
sd_price = sd(price)
)

A tibble: 5 x 3
cut mean_price sd_price
<ord> <dbl> <dbl>

1 Fair 4359. 3560.
2 Good 3929. 3682.
3 Very Good 3982. 3936.
4 Premium 4584. 4349.
5 Ideal 3458. 3808.

The dplyr group_by() and summarise() returns a table with two new columns. These are
the values ggplot uses. The mean_price for the bar height, the mean_price - sd_price for
the lower extent of each error bar, and mean_price + sd_price for the higher extent of each
error bar.

47

So how do we get standard error added onto the bars? Recalling that standard error is just
the standard deviation divided by the square root of the sample size, and the sample size for
a group would be the same as the number of things in it, which we get from the n() function
we can use

diamonds %>%
group_by(cut) %>%
summarise(

mean_price = mean(price),
se_price = sd(price) / sqrt(n())
)

A tibble: 5 x 3
cut mean_price se_price
<ord> <dbl> <dbl>

1 Fair 4359. 88.7
2 Good 3929. 52.6
3 Very Good 3982. 35.8
4 Premium 4584. 37.0
5 Ideal 3458. 25.9

These can be worked with as before

diamonds %>%
group_by(cut) %>%
summarise(

mean_price = mean(price),
se_price = sd(price) / sqrt(n())
) %>%
ggplot() +

aes(x = cut, y = mean_price) +
geom_bar(stat="identity") +
geom_errorbar(

aes(
ymin = mean_price - se_price,
ymax = mean_price + se_price
)

)

48

0

1000

2000

3000

4000

Fair Good Very Good Premium Ideal
cut

m
ea

n_
pr

ic
e

The figure shows how a large sample size really distorts error bar calculations! An interesting
view of difference of price is given by using standard error and interpreting lack of overlap as
a proxy for significance with such large sample sizes.

49

Part III

Making messy data tidy with tidyr

50

5 Tidying data

5.1 About this chapter

1. Questions:

• How do I go from non-tidy to tidy data structures?

2. Objectives:

• Manipulating dataframes with the tidyr verbs

3. Keypoints:

• The tidyr package contains functions that affect the layout and structure of dataframes.

5.2 tidyr

tidyr is a tool for manipulating layout of datasets. As part of the tidyverse it is loaded when
you use library(tidyverse) but can be loaded on its own with library(tidyr). tidyr has
two main functions - spread() and gather().

5.2.1 Sample tidy datasets

Let’s look at five sample tables that show the same data in different ways, only one of which
counts as tidy.

table1

A tibble: 6 x 4
country year cases population
<chr> <int> <int> <int>

1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362

51

4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

table2

A tibble: 12 x 4
country year type count
<chr> <int> <chr> <int>

1 Afghanistan 1999 cases 745
2 Afghanistan 1999 population 19987071
3 Afghanistan 2000 cases 2666
4 Afghanistan 2000 population 20595360
5 Brazil 1999 cases 37737
6 Brazil 1999 population 172006362
7 Brazil 2000 cases 80488
8 Brazil 2000 population 174504898
9 China 1999 cases 212258
10 China 1999 population 1272915272
11 China 2000 cases 213766
12 China 2000 population 1280428583

table3

A tibble: 6 x 3
country year rate

* <chr> <int> <chr>
1 Afghanistan 1999 745/19987071
2 Afghanistan 2000 2666/20595360
3 Brazil 1999 37737/172006362
4 Brazil 2000 80488/174504898
5 China 1999 212258/1272915272
6 China 2000 213766/1280428583

table4a

A tibble: 3 x 3
country `1999` `2000`

* <chr> <int> <int>

52

1 Afghanistan 745 2666
2 Brazil 37737 80488
3 China 212258 213766

table4b

A tibble: 3 x 3
country `1999` `2000`

* <chr> <int> <int>
1 Afghanistan 19987071 20595360
2 Brazil 172006362 174504898
3 China 1272915272 1280428583

The tidy data is in table1.

• table2 is not tidy because not every variable has its own column. The count column has
values for cases and population and these are two different things. The type column
could be a variable on its own, but as used here its a way to mix up the count variable
unneccesarily.

• table3 is not tidy because rate is currently a function of two variables - literally
its printed as cases/population. The column rate should contain the result of
cases/population and if we wanted to retain the case and population information it
should be in its own column, like in table1

• table4a and table4b aren’t tidy, because the data are split over two tables and in each
table the values of the year variable are split over multiple columns.

Let’s work with each of these non-tidy datasets in turn to get them tidy.

5.3 pivot_longer()

The most common problem is that in table4a, where the values of a variable are split over
multiple columns.

table4a

A tibble: 3 x 3
country `1999` `2000`

* <chr> <int> <int>
1 Afghanistan 745 2666
2 Brazil 37737 80488
3 China 212258 213766

53

To tidy this, we can use pivot_longer(), which increases the number of rows and decreases
the number of columns. It needs three bits of information:

1. The column(s) to keep un-pivoted - these are columns that are likely already tidy. All
other columns will be pivoted

2. The name of a new column in which to put the old column names
3. The name of a new column in which to put the old values

The function call looks like this:

table4a %>%
pivot_longer(-country, names_to = "year", values_to = "cases")

A tibble: 6 x 3
country year cases
<chr> <chr> <int>

1 Afghanistan 1999 745
2 Afghanistan 2000 2666
3 Brazil 1999 37737
4 Brazil 2000 80488
5 China 1999 212258
6 China 2000 213766

Note how we use the -country syntax to mean ‘pivot everything but country’. The names_to
argument tells pivot_longer() where to put the names, and the values_to argument specifies
where the numbers should go.

Note too how the columns we pivoted (1999 and 2000) have been dropped from the table
completely. This little table is now tidy.

We can do the same with table4b but this one has the value population

table4b %>%
pivot_longer(-country, names_to = "year", values_to = "population")

A tibble: 6 x 3
country year population
<chr> <chr> <int>

1 Afghanistan 1999 19987071
2 Afghanistan 2000 20595360
3 Brazil 1999 172006362
4 Brazil 2000 174504898

54

5 China 1999 1272915272
6 China 2000 1280428583

To combine these together we can use left_join().

t4a <- table4a %>%
pivot_longer(-country, names_to = "year", values_to = "cases")

t4b <- table4b %>%
pivot_longer(-country, names_to = "year", values_to = "population")

left_join(t4a, t4b)

Joining, by = c("country", "year")

A tibble: 6 x 4
country year cases population
<chr> <chr> <int> <int>

1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

Note we don’t need to specify the by = argument, since the two tables have column names in
common - left_join() works that out and does the join automatically.

5.4 pivot_wider()

The inverse function to pivot_longer() is pivot_wider() which increases column number
and decreases row count. This function needs two pieces of information

1. The column from which to get the new row names
2. The columns from which to get the values

This is useful for dealing with the table2 case.

table2 %>%
pivot_wider(names_from = type, values_from = count)

55

A tibble: 6 x 4
country year cases population
<chr> <int> <int> <int>

1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

5.5 separate()

The seperate() function turns one column into many by splitting the value whenever a
particular character appears. Remember table3

table3

A tibble: 6 x 3
country year rate

* <chr> <int> <chr>
1 Afghanistan 1999 745/19987071
2 Afghanistan 2000 2666/20595360
3 Brazil 1999 37737/172006362
4 Brazil 2000 80488/174504898
5 China 1999 212258/1272915272
6 China 2000 213766/1280428583

We can separate that rate column into two - cases and population

table3 %>%
separate(rate, into = c("cases", "population"))

A tibble: 6 x 4
country year cases population
<chr> <int> <chr> <chr>

1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272

56

6 China 2000 213766 1280428583

By default separate() splits things on any non-numeric character. But we can be explicit
with the sep argument.

table3 %>%
separate(rate, into = c("cases", "population"), sep = "/")

A tibble: 6 x 4
country year cases population
<chr> <int> <chr> <chr>

1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

This works just as well, but is useful if the computer makes a bad guess.

Note the column types of cases and population, they’re down as chr. By default the type of
the parent column is retained, but you can make separate() guess what type the new column
is with the convert argument.

table3 %>%
separate(rate, into = c("cases", "population"), sep = "/", convert = TRUE)

A tibble: 6 x 4
country year cases population
<chr> <int> <int> <int>

1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

And now, we’re back to tidy data.

57

5.6 unite()

The unite() function is the inverse of separate(), and combines multiple columns into a
single one.

To demonstrate unite() we can make a new table, table5 by using the separate() function
on the year column in table3. Passing sep a number, tells it just to split that many characters
into the string

Here’s table5

table5 <- table3 %>%
separate(year, into = c("century", "year"), sep = 2, convert = TRUE)

table5

A tibble: 6 x 4
country century year rate
<chr> <int> <int> <chr>

1 Afghanistan 19 99 745/19987071
2 Afghanistan 20 0 2666/20595360
3 Brazil 19 99 37737/172006362
4 Brazil 20 0 80488/174504898
5 China 19 99 212258/1272915272
6 China 20 0 213766/1280428583

We can now re- unite() table5. The arguments for this function are just the name of the
new column, and the columns to join

table5 %>%
unite(new, century, year)

A tibble: 6 x 3
country new rate
<chr> <chr> <chr>

1 Afghanistan 19_99 745/19987071
2 Afghanistan 20_0 2666/20595360
3 Brazil 19_99 37737/172006362
4 Brazil 20_0 80488/174504898
5 China 19_99 212258/1272915272
6 China 20_0 213766/1280428583

58

Here the default is to use an underscore _ to join the values, but we can be explicit and use
nothing with the sep argument

table5 %>%
unite(new, century, year, sep="")

A tibble: 6 x 3
country new rate
<chr> <chr> <chr>

1 Afghanistan 1999 745/19987071
2 Afghanistan 200 2666/20595360
3 Brazil 1999 37737/172006362
4 Brazil 200 80488/174504898
5 China 1999 212258/1272915272
6 China 200 213766/1280428583

5.7 Quiz

1. Examine the table1 and table4a datasets. Combine table4a to table1 to create two
new columns. Ensure the columns make sense and retain data integrity.

2. Tidying data is hard! And it needs you to know your data quite well, which naturally
takes time. Rather than quiz questions here, a worked example will give good benefit,
so let’s try one of those. Do the Case Study on page 163 of R for Data Science. If you
don’t have the print edition it is available online here Case Study for Tidy Data.

59

http://r4ds.had.co.nz/tidy-data.html#case-study

6 Loading data from files

6.1 About this chapter

1. Questions:

• How do I get my data into R?

2. Objectives:

• Loading a ‘.csv’ file
• Checking column contents
• Dealing with headers and column names
• Loading a specific sheet from a ‘.xlsx’ file.

3. Keypoints:

• The readr and readxl packages contain functions for loading data from .csv and .xslx
files. These functions help you to ensure that your data is loaded as you expect.

6.2 readr

readr is a tool for loading data into R. As part of the tidyverse it is loaded when you use
library(tidyverse) but can be loaded on its own with library(readr). We will use readr
to load in data from a ‘flat’ .csv file. Most

6.2.1 read_csv()

The main function is read_csv() which can read a standard comma separated values file from
disk into an R dataframe. There are a few variants of read_csv() which may be appropriate
for different sorts of .csv file, but they all work the same.

• read_csv2() - reads semi-colon delimited files, which are commonly used where a comma
is used as a decimal separator

• read_tsv() - reads tab delimited files
• read_delim() - reads files delimited by an arbitrary character

60

The first argument to read_csv() is the path to the file to read. Here I’ll read a file on my
Desktop that contains the diamonds data we’ve been using.

read_csv("~/Desktop/diamonds.csv")

Rows: 53940 Columns: 10
-- Column specification --
Delimiter: ","
chr (3): cut, color, clarity
dbl (7): carat, depth, table, price, x, y, z

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 53,930 more rows

On loading we see a column specification, read_csv() has guessed at what the columns should
be and made those types. Its fine for the most part, but some of those columns we’d prefer
to be factors. We can set our own column specification to force the column types on loading.
We only have to do the ones that read_csv() gets wrong. Specifically, lets fix cut and color
to a factor. We can do that with the col_types argument.

read_csv("~/Desktop/diamonds.csv",
col_types = cols(
cut = col_factor(NULL),
color = col_factor(NULL)

)
)

61

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <fct> <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 53,930 more rows

6.2.2 Parser functions

This works by assigning a parser function that returns a specific type to each column, here it’s
col_factor(). There are parser functions for all types of data, and all of them can be used
if read_csv() doesn’t guess your data properly. We won’t go into detail of all of them, just
remember that if your numbers or dates or stuff won’t load properly, there’s a parser function
that can help.

The parser functions all have their own arguments, so we can manipulate those. We can see
the NULL argument being passed to col_factor() above, which means ‘all values found should
be used as levels of the factor’. This is a great default setting, but if we have a large file, it
won’t help us find unexpected values.

Consider a situation where we are certain we should only have the values Fair, Good and Very
Good for cut in our diamonds data. We can make the parser function check this for us and
give a warning if it finds anything else.

read_csv("~/Desktop/diamonds.csv",
col_types = cols(
cut = col_factor(levels = c("Fair" ,"Good", "Very Good")),
color = col_factor(NULL)

)
)

Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
dat <- vroom(...)

62

problems(dat)

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <fct> <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 0.23 <NA> E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 <NA> E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 <NA> I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 53,930 more rows

This time, we get a large number of warnings. Though the output is quite cryptic at first
glance, read_csv() is complaining that it found values for cut that were not in the list we
passed to the parser function.

Hence we can use parsers to ensure we are loading in the data we expect and generate errors
if not.

6.2.3 Headers and column names

By default read_csv() uses the first line of the file for column names. Consider this toy
example.

toy_csv <-
"a,b,c
1,2,3
4,5,6"
read_csv(toy_csv)

Rows: 2 Columns: 3
-- Column specification --
Delimiter: ","
dbl (3): a, b, c

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

63

A tibble: 2 x 3
a b c

<dbl> <dbl> <dbl>
1 1 2 3
2 4 5 6

The first line of the toy file becomes the column headings. This may not be appropriate, since
there could be some metadata in the file

toy_csv <-
"some info about stuff
a,b,c
1,2,3
4,5,6"
read_csv(toy_csv)

Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
dat <- vroom(...)
problems(dat)

Rows: 3 Columns: 1
-- Column specification --
Delimiter: ","
chr (1): some info about stuff

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 3 x 1
`some info about stuff`
<chr>

1 a,b,c
2 1,2,3
3 4,5,6

The loaded data gets really messed up, so we can skip a set number of lines if needed

toy_csv <-
"some info about stuff
a,b,c

64

1,2,3
4,5,6"
read_csv(toy_csv, skip = 1)

Rows: 2 Columns: 3
-- Column specification --
Delimiter: ","
dbl (3): a, b, c

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 2 x 3
a b c

<dbl> <dbl> <dbl>
1 1 2 3
2 4 5 6

Alternatively, you might have comments that begin with a particular character. You can use
the comment argument to skip those lines

toy_csv <-
"#some info about stuff
#some more info
#goodness, lots of INFO
a,b,c
1,2,3
4,5,6"
read_csv(toy_csv, comment = "#")

Rows: 2 Columns: 3
-- Column specification --
Delimiter: ","
dbl (3): a, b, c

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 2 x 3
a b c

65

<dbl> <dbl> <dbl>
1 1 2 3
2 4 5 6

The data might not have any column names at all, the first row may data. This situation is
handled with col_names argument

toy_csv <-
"1,2,3
4,5,6"
read_csv(toy_csv, col_names = FALSE)

Rows: 2 Columns: 3
-- Column specification --
Delimiter: ","
dbl (3): X1, X2, X3

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 2 x 3
X1 X2 X3

<dbl> <dbl> <dbl>
1 1 2 3
2 4 5 6

So, read_csv() sets up arbitrary column names. We can specify column names if we wish

toy_csv <-
"a,b,c
1,2,3
4,5,6"
read_csv(toy_csv, col_names = c("x", "y", "z"))

Rows: 3 Columns: 3
-- Column specification --
Delimiter: ","
chr (3): x, y, z

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

66

A tibble: 3 x 3
x y z
<chr> <chr> <chr>

1 a b c
2 1 2 3
3 4 5 6

6.2.4 Missing values

There are many different ways of encoding missing values, you can tell read_csv() which
character represents a missing value explicitly with the na argument. These values will all be
loaded as proper NA.

toy_csv <-
"a,b,c
1,_,3
4,5,_"
read_csv(toy_csv, na = "_")

Rows: 2 Columns: 3
-- Column specification --
Delimiter: ","
dbl (3): a, b, c

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 2 x 3
a b c

<dbl> <dbl> <dbl>
1 1 NA 3
2 4 5 NA

6.3 Writing Files

A complementary function to read_csv() write_csv() allows you to write a dataframe out
to a ‘.csv’ file. The convention is straightforward, you need the name of the dataframe and the
name of the file and path to write to.

write_csv(diamonds, "~/Desktop/my_data.csv")

67

6.4 readxl

The readxl package is installed as part of the tidyverse install.packages() command, but
it is not part of the core, so library(tidyverse) does not load it. You must do it explicitly
with library(readxl).

6.4.1 read_xlsx()

The main function is read_xlsx(), it’s similar to read_csv().

library(readxl)
read_xlsx("~/Desktop/datasets.xlsx")

A tibble: 150 x 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

<dbl> <dbl> <dbl> <dbl> <chr>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
... with 140 more rows

By default it loads the first worksheet, you can examine the sheets available with
excel_sheets()

excel_sheets("~/Desktop/datasets.xlsx")

[1] "iris" "chickwts" "mtcars" "quakes"

Then load in the one you want.

read_xlsx("~/Desktop/datasets.xlsx", sheet = "chickwts")

68

A tibble: 71 x 2
weight feed
<dbl> <chr>

1 179 horsebean
2 160 horsebean
3 136 horsebean
4 227 horsebean
5 217 horsebean
6 168 horsebean
7 108 horsebean
8 124 horsebean
9 143 horsebean
10 140 horsebean
... with 61 more rows

Loading then follows the same pattern as for read_csv(), with a difference in the column
specifications - in this package its much simpler. You can only specify type columnwise and
the specification can only be one of “skip”, “guess”, “logical”, “numeric”, “date”, “text” or
“list” - meaning you can’t do the advanced parsing as for read_csv().

A sample spec might look like

read_xlsx(
"~/Desktop/datasets.xlsx",
sheet = "chickwts",
col_types = c("numeric", "text")
)

A tibble: 71 x 2
weight feed
<dbl> <chr>

1 179 horsebean
2 160 horsebean
3 136 horsebean
4 227 horsebean
5 217 horsebean
6 168 horsebean
7 108 horsebean
8 124 horsebean
9 143 horsebean
10 140 horsebean
... with 61 more rows

69

Prerequisites

No specific knowledge is assumed for this book, though you will need to install some software.

1. R
2. RStudio
3. The tidyverse packages

You’ll also need the following files diamonds.csv and datasets.xlsx

Installing R

Follow this link and install the right version for your operating system https://www.stats.bris.
ac.uk/R/

Installing RStudio

Follow this link and install the right version for your operating system https://www.rstudio.
com/products/rstudio/download/

Installing R packages in RStudio

To install all the tidyverse packages in one go start RStudio and use the Packages tab in the
lower-right panel. Click the install button (top left of the panel) and enter ‘tidyverse’, then
click install as in this picture

To complete the quizzes you’ll need a package called nycflights13. Install that in the same
way.

70

assets/diamonds.csv
assets/datasets.xlsx
https://www.stats.bris.ac.uk/R/
https://www.stats.bris.ac.uk/R/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

R Fundamentals

About this chapter

1. Questions:

• How do I use R?

2. Objectives:

• Become familiar with R syntax
• Understand the concepts of objects and assignment
• Get exposed to a few functions

3. Keypoints:

• R’s capabilities are provided by functions
• R users call functions and get results

Working with R

In this workshop we’ll use R in the extremely useful RStudio software For the most part we’ll
work interactively, meaning we’ll type stuff straight into the R console in RStudio (Usually
this is a window on the left or lower left) and get our results there too (usually in the consoled
or in a window on the right). That’s what you see in panels like the ones below - first the
thing to type into R, and below it, the calculated result from R. Let’s look at how R works by
using it for it’s most basic job - as a calculator:

3 + 5

[1] 8

12 * 2

[1] 24

71

1 / 3

[1] 0.3333333

12 * 2

[1] 24

3 / 0

[1] Inf

Fairly straightforward, we type in the expression and we get a result. That’s how this whole
book will work, you type the stuff in, and get answers out. It’ll be easiest to learn if you go
ahead and copy the examples one by one. Try to resist the urge to use copy and paste. Typing
longhand really encourages you to look at what you’re entering.

As far as the R ouput itself goes, it’s really straightforward - its just the answer with a [1]
stuck on the front. This [1] tells us how far through the output we are. Often R will return
long lists of numbers and it can be helpful to have this extra information

Variables

We can save the output of operations for later use by giving it a name using the assignment
symbol <-. Read this symbol as ‘gets’, so x <- 5 reads as ‘x gets 5’. These names are called
variables, because the value they are associated with can change.

Let’s give five a name, x then refer to the value 5 by it’s name. We can then use the name in
place of the value. In the jargon of computing we say we are assigning a value to a variable.

x <- 5
x

[1] 5

x * 2

[1] 10

72

y <- 3
x * y

[1] 15

This is of course of limited value with just numbers but is of great value when we have large
datasets, as the whole thing can be referred to by the variable.

Using objects and functions

At the top level, R is a simple language with two types of thing: functions and objects. As
a user you will use functions to do stuff, and get back objects as an answer. Functions are
easy to spot, they are a name followed by a pair of brackets like mean() is the function for
calculating a mean. The options (or arguments) for the function go inside the brackets:

sqrt(16)

[1] 4

Often the result from a function will be more complicated than a simple number object, often
it will be a vector (simple list), like from the rnorm() function that returns lists of random
numbers

rnorm(100)

[1] 1.520700076 1.036295473 -0.874599369 -0.260136251 -0.056805311
[6] 0.749202701 -0.096622995 -0.066419309 0.252636265 -0.886850139
[11] -1.938269917 -0.792701681 -1.363333540 -1.362584355 -0.648782720
[16] 1.939155384 -1.314069238 -0.008326479 0.441398889 -1.107396158
[21] -1.155586431 -0.402659726 -1.227652192 0.937668935 0.272135223
[26] -0.084738579 -1.393393079 -0.895853294 -1.247726973 0.207936924
[31] 0.405781234 -0.697056048 2.508132859 -0.900891178 0.788282000
[36] 1.550095361 1.278454358 0.281136570 -1.990978556 0.616745489
[41] 1.210177857 0.319485078 1.531433602 -0.356557177 0.285202059
[46] -0.255506914 2.058455279 -0.188188467 -0.537531336 -0.882161159
[51] 1.598926240 -0.924468708 0.207928789 0.136033386 -0.061600532
[56] 0.008107545 0.281493956 -0.664740240 -0.017240637 -0.592897451
[61] -0.650489689 -0.021639955 0.577086388 0.170213713 1.565463050
[66] 1.269155178 -1.044526533 0.297361521 -1.205617689 1.070891663

73

[71] -0.686640154 0.617385075 -0.626533459 0.164793000 -0.533990925
[76] -1.212021336 0.187127581 -2.201308449 -0.120977051 0.291965233
[81] 1.205023626 -0.701046187 -1.196396786 -0.542822385 0.149667506
[86] 1.090811850 1.626486885 -0.880739549 -0.804580498 -2.591347290
[91] -0.229750150 0.410049189 0.754869422 -0.282827877 0.331979313
[96] 1.034427787 0.116049658 -2.326052584 1.068990597 0.118103577

We can combine objects, variables and functions to do more complex stuff in R, here’s how we
get the mean of 100 random numbers.

numbers <- rnorm(100)
mean(numbers)

[1] 0.04819538

Here we created a vector object with rnorm(100) and assigned it to the variable numbers. We
than used the mean() function, passing it the variable numbers. The mean() function returned
the mean of the hundred random numbers.

Bracket notation in this document

I’m going to use the following descriptions for the symbols (), [] and {}:

() are brackets, [] are square brackets {} are curly brackets

Quiz

1. Create two variables, a and b: Add them. What happens if we change a and then re-add
a and b?

2. We can also assign a + b to a new variable, c. How would you do this?
3. Try some R functions: round(), c(), range(), plot() hint: Get help on a function by

typing ?function_name e.g ?c(). Use the mean() function to calculate the average age
of everyone in your house (Invent a housemate if you have to).

74

Acknowledgements

75

	Motivation
	Tidy data analysis
	Aim of this book
	Organization of this book
	External Resources

	Background
	Tidy Data
	About this chapter
	Tidy data
	A sample tidy data set
	Class

	Quiz

	Working with tidy data in dplyr
	dplyr Verbs
	About this chapter
	dplyr
	Pipe Syntax
	select()
	rename()

	filter()
	Comparisons
	Logical operators

	mutate()
	Functions in mutate()
	if_else()

	summarize() and group_by()
	Helpful summarize() functions

	arrange()
	Missing Values
	Quiz

	Combining Datasets
	About this chapter
	Joining
	Key columns

	Join functions
	left_join()
	right_join()
	inner_join()
	full_join()
	Joins with no common column names

	Binding operations
	Quiz

	dplyr and ggplot
	Piping to ggplot()
	Quick bar charts

	Making messy data tidy with tidyr
	Tidying data
	About this chapter
	tidyr
	Sample tidy datasets

	pivot_longer()
	pivot_wider()
	separate()
	unite()
	Quiz

	Loading data from files
	About this chapter
	readr
	read_csv()
	Parser functions
	Headers and column names
	Missing values

	Writing Files
	readxl
	read_xlsx()

	Appendices
	Prerequisites
	Installing R
	Installing RStudio
	Installing R packages in RStudio

	R Fundamentals
	About this chapter
	Working with R
	Variables
	Using objects and functions

	Bracket notation in this document
	Quiz

	Acknowledgements

