Thinking about how to program

Dan MacLean

May 2022

Table of contents

What is Programming? 4
1 Reflection 5
1.1 Reflection and critique as programming tools 5

1.2 Scratch - our creativity tool L 5
1.2.1 Sharing Scratch Projects with Studios 7

1.3 Criticising projects L 7
1.3.1 What is appropriate criticism? 0oL 7

1.3.2 Delivering (and receiving) criticism well 7

1.3.3 An important note on groups of friends 8

1.4 Inthissection we.. L 9

2 Sequence 10
2.1 Examining and building a sequence of instructions 10
2.2 Building a sequence with constraints 11
2.3 Fixingsome bugs 12

3 Loops and Conditionals 14
3.1 Fixing some bugso 14
3.2 Types ofloop blocks 15
3.3 Conditionals L 16
3.4 A creative project L 17
3.5 Inthissection we.. L L 17

4 Re-Use 18
4.1 TImplementing blocks 18
4.2 Fixing some bugso 19
4.3 Abstraction 19
4.4 A major insight - its blocks all the way down 20
4.5 In this section we 20

5 Variables 21
5.1 Variables - names for changing values 21
5.2 Buildingagame L 22

6 Final thought 23

Appendices

Acknowledgements

23

24

What is Programming?

@ Wisdom

This is not going to go the way you think.

Luke Skywalker

Programming is the task of creating instructions so that a computer can perform a task for
you.

At the highest level programming has two steps: design a solution to a problem, then encode
the solution so a computer can do the work. The first part is a challenge for creative logic,
the second a challenge for language. Programming a computer takes more of our imagination
and creativity than it does of our cold, hard logic or mathematics.

This guide is intended to help a beginner reach an understanding of how to design a solution
to a problem in such a way that it can later be translated into a programming language. No
coding in a programming language is demonstrated in this guide, instead the guide focuses on
the building blocks of solutions for programming: sequences, loops, events, conditions, and on
the key computational thinking practices: experimentation and iteration, testing, re-use and
abstraction. In this guide we use a graphical tool called Scratch to create and apply these
concepts in a computer.

The guide aims to teach an understanding of the way that programs are built, before we
understand how programs are encoded in a language.

Be prepared, this is not a typical programming course. It will be a largely self led exploration of
concepts and ideas, not a slog through syntax and rote copying. If you've seen a programming
guide before, forget it. Here your best tools will be your imagination, a notebook, a friend
and your powers of reflection and criticism. This guide will be your research partner in the
exploration helping you to reveal the fundamental concepts of programming.

For this course you will need.

1. A computer with an internet connection
2. A notebook
3. A friend (actually this is optional, but will be helpful).

1 Reflection

1.1 Reflection and critique as programming tools

The extent to which programming is a slow, difficult and often collaborative effort isn’t widely
appreciated. Stereotypes of ‘hackers’ in media abound - and this stereotype suggests that
building a program comes from heroic spurts of inspiration and esoteric knowledge. More
realistically, building a program is a slow process that involves thinking about a problem,
weighing up different potential solutions and expressing them. Reflecting on problems and
potential solutions and criticising them (in the strict neutral sense of evaluating and assessing
dispassionately) are really important tools for advancing the solution to a problem and its
implementation in a program.

The aim of this section is to encourage practice in these skills.

As so much of this guide will involve reflection and criticism, having someone you feel com-
fortable discussing stuff with will be helpful. It’s not absolutely necessary, though. You can
do all of this guide by yourself if you’d prefer.

1.2 Scratch - our creativity tool

Scratch is a free graphical computer program for creating media projects. It is available at the
MIT Scratch website

With it you can create a wide variety of interactive projects - animations, games etc. Hundreds
of thousands of people use Scratch across the world, including primary school children and
Harvard computer science undergraduates learning to program. It’s designed to be accessible
yet complete. It encompasses all the key concepts we’ll need to understand programming.
Take a look at this introductory video.

Let’s investigate Scratch!

http://scratch.mit.edu
http://scratch.mit.edu
https://vimeo.com/65583694

@ For you to do

These tasks may seem trivial, hopefully they will seem playful. Have some fun with them.

1. Sign-up for Scratch https://scratch.mit.edu/

2. Browse some starter projects at https://scratch.mit.edu/starter_projects/ online

3. In your notebook, sketch ideas for three different Scratch projects you would like
to create.

4. Go to Scratch and make the Scratch cat do something surprising

-

Wait, what?

Yep, item number four does say to go and do something in Scratch.

117

But you haven’t shown us how to use it? Are we supposed to just go and do it? What
are we learning here?

Glad you asked! The object here would be for you to identify the stomach churning desperation
that comes from not knowing how to solve something, yet being committed to doing so. And
with that burning in your gut you manage not to be paralysed by the darkness of ignorance
and still manage to claw your way into the light.

A lot of the time with programming you’re not going to know exactly what to do at the outset.
This task reaches out to your inquisitiveness and curious spirit. Just give it a go - you can’t
break anything or go wrong.

Look at this way, if you're sitting there thinking you don’t know how to do it, anything you
do will be a surprise!

You can do this, I believe in you.

Here’s a starter sheet if you would like a Iittle hint.

@ For you to do

When you’ve built something surprising, reflect on Scratch, perhaps using the points
below, jot your responses in your notebook and/or with your friend(s).

1. What did you figure out?
2. What do you want to know more about?

https://scratch.mit.edu/
https://scratch.mit.edu/starter_projects/

1.2.1 Sharing Scratch Projects with Studios

Scratch Studios are a feature of the Scratch website, basically a sort of gallery to which you
can post your creations. Let’s use them!

@ For you to do

1. Find the Scratch Surprise Studio on the website http://scratch.mit.edu/studios/
460431. Add your Scratch creation.

Here’s a studio sheet for some hints.

1.3 Criticising projects

As you develop programming skills, being able to criticise and find strengths and weaknesses
in your and other projects will help you build stronger, better projects.

Let’s think now about criticising each others projects. If you are working with a friend (or
group of friends) make sure you can find your projects in the Scratch Surprise Studio.

1.3.1 What is appropriate criticism?

This is a tricky subject, anything about the project could be criticised legitamately. But much
of people’s difficulty with giving and receiving criticism stems from the fact different people
take criticism differently. But some rules of thumb can help you come up with constructive
comments.

o Keep things about the project, not the person!

e Be convinced that there is a need for the point you wish to make - be sure that you
believe it really will help

¢ Find and say a positive before you deliver a negative

e Don’t say something because you haven’t said something for a while.

1.3.2 Delivering (and receiving) criticism well

Some people are totally upset by the slightest perceived negative. These people are awesome
to have on a team, they are very valuable as constant re-evaluators: iteration of a project
can go much quicker when they’re involved. At the other end of the scale some people are
impervious to criticism and will take anything you can say and remain upbeat. These people
are great at maintaining a positive direction in a team and help stop it from getting mired in

http://scratch.mit.edu/studios/460431
http://scratch.mit.edu/studios/460431

details. But such diversity makes it difficult to pitch a point! As you’ll have worked out, when
delivering a point you need to try to be sensitive about people’s views - just because you have
a valid point you don’t have a right to be rude or insensitive, you still have a responsibility to
help maintain the civility of the conversation.

If you know you’re the sort of person whom criticism affects strongly, try to accept other
people’s points with the presumption of good faith from the other side.

If you're the sort of person that criticism just bounces off, try to invest some time in thinking
specifically about what you’ve received, try other people’s ideas on for size.

@ For you to do

1. Fill in the table below for each Surprise Scratch project by each person in your
critique group of friends.

What is something that ~What is something that is What is something that
Feedbackdoesn’t work or could confusing or could be done works well or you really like
by be improved? differently? about the project?
77 77 77 ??
77 77 77 77

It may be helpful to think about:

e Clarity: Did you understand what the project is supposed to do?

e Features: What features does the project have? Does the project work as expected?

e Appeal: How engaging is the project? Is it interactive, original, sophisticated, funny, or
interesting? How did you feel as you interacted with it?

1.3.3 An important note on groups of friends

When you choose a group of friends for this work, its going to be best if you can find someone
with whom you can exchange ideas frankly. In an academic setting, probably not everyone
you could work with will work well as a partner in a critique group. A lot of this will depend
on different expectations of roles in people from different social and ethnic backgrounds. Try
to work with someone at a similar professional level, it can be hard to tell someone in a more
senior role that they’re wrong , and what they say can be taken as ‘the right answer’ - when
all contributions are valuable. Be aware too of the influence of a person’s background on
how they’d express a personal opinion. If you’re from a place where it feels more natural to
go along with the flow, try to find someone you’d be comfortable to express your ideas with.
Experiment with sharing views over written media, rather than face to face.

1.4 In this section we...

1 Roundup

In this section we have endeavoured to practice the reflection skill so necessary for evalu-
ating your designs and creations in software. The iterative development process relies on

incremental improvements. Being able to give and receive new ideas (often from yourself)
will help massively.

2 Sequence

@ Wisdom
A .B,C. It’s easy as 1,2,3. As simple as do-re-mi.

The Jackson 5

A computer program is a sequence of instructions for a computer to execute. Identifying the
proper sequence of events is a vital skill. That’s the main aim of this section - breaking things
down into sequences. The secondary aim will be to practice iteration, by experimenting with
sequences of things we’ll initially get things wrong, but by iterating each time we will get closer
to a good solution.

2.1 Examining and building a sequence of instructions

Let’s get straight to it and break down a sequence.

10

@ For you to do

1. In pairs work out who doesn’t mind being bossed and who doesn’t mind being
bossy ¢

2. Bossed partner: Close your eyes! (or at least look away from the screen)

3. Bossy partner: Watch one of the videos °

o http://vimeo.com /28612347
o http://vimeo.com /28612585
e http://vimeo.com/28612800
o http://vimeo.com/28612970

4. Bossy partner: describe (using spoken words only) how to perform the sequence of
moves in the video. Bossed partner: Do only what the bossy partner tells you, are
there any points where you need them to be clearer? If they aren’t making sense -
say so.

5. Write down the steps as you go. Work from the steps.

6. In your design journal:

o Reflect on what was easy/difficult about being bossy
o Reflect on what was easy/difficult about being bossed
e What was difficult about watching?

2As far as you possibly can anyway! If you’re doing this alone you’ll have to do both parts, which may
mean developing temporary amnesia. If you can’t decide which of you is which, then choose randomly.
*If you have more than one pair in the group, cover as many videos as you can.

The process above may have revealed a few points. The most apparent is that in order to
be understood it is vital to be explicit about the action. Another is that the receiver of
instruction (here the bossed partner) is not (often) able to ‘just do what you meant’ and get
it right. The whole process probably took a few goes at least while you worked it out, so
iteration is important. The list of instructions you created was a prototype program for a
dance! This form of program, not real code - but a good description of the important parts is
called pseudocode. The first draft of a real program will often be pseudocode.

2.2 Building a sequence with constraints

Computer languages don’t have a command for each possible action. They instead have very
restricted sets of key commands that must be chained and used creatively to make larger
effects. The commands they do have are often quite limited and do very specific tasks.

This is a deliberate design feature. Flexibility and power comes from these small units, chained
together in novel sequences.

11

http://vimeo.com/28612347
http://vimeo.com/28612585
http://vimeo.com/28612800
http://vimeo.com/28612970

In this section we’ll examine using small units in different sequences.

@ For you to do

1. Start a new Scratch project
2. Using only the below ten blocks, make something that interests you

e go to

. glide

e say

e show

e hide

e set size

e play sound

e wait

e when this sprite clicked
e repeat

3. Share your creation in the 10 Blocks Studio http://scratch.mit.edu/studios/475480
4. In your critique groups or your design journal, discuss the following:

e What was difficult about being able to use 10 blocks?
e What was easy about only being able to use 10 blocks?
e How did the constraint make you think of things differently?

2.3 Fixing some bugs

Let’s examine some broken sequences and try to fix them. In this section the aim will be to
explore the central sequence, and practice iterative testing and de-bugging. This is your first
opportunity to try out the major parts of the development cycle.

@ For you to do

1. Do the five debugging challenges described on this debugging sheet
2. Discuss your testing and debugging practices with a partner. Make note of the
similarities and differences in your strategies.

12

http://scratch.mit.edu/studios/475480

1 Roundup

In this section we’ve looked at the importance of sequence. Breaking a problem down in
to small parts is a key step to solving it. Programs are built from a sequence of small
units executed in a particular order. Applying and replying combinations of commands,
testing them and repeating until the combination works is the main development loop of
programming.

13

3 Loops and Conditionals

@ Wisdom

With just one polka dot, nothing can be achieved.

Yayoi Kusama

In this section we will get to grips with a key control feature of programming - looping. Looping
at its simplest is just doing things over and over again until you have some reason to stop.
Loops are a way of making the computer really work for you.

A loop is a code construct that contains code. Think of it as a box of code that gets run over
and over. In Scratch the graphical metaphor is very simple, you have a block with a mouth,
inside that mouth is the loop code, everything in the mouth gets repeated for as long as the
loop definition says to. The loop definition is the the bit of writing at the top of the mouth.

These things make a lot more sense when you see them in use. Let’s examine some loops by
building some that make music!

@ For you to do

1. Do the build a band worksheet
2. Experiment with timing and the number of repeats in each repeat section to come
up with a pleasing musical arrangement.

So that’s the basic idea, loops do stuff over and over. They can do set numbers of repeats,
keep going forever or keep going until something else happens.

3.1 Fixing some bugs

Let’s have a look at some code with loops, some of which needs fixing.

14

when this sprite clicked

repeated
<+«—code

Figure 3.1: A loop block. The yellow mouth section is the definition that describes how often
the loop runs. The code inside the loop mouth is the bit that actually gets redone
over and over

@ For you to do

1. Do the loop debugging worksheet
2. In your critique groups or your design journal:

e Discuss the importance of the counter in the loop? When can it break the
code?

3.2 Types of loop blocks

Mostly here we’ve seen the repeat loop block, thats the most obvious sort but there are plenty
of variations.

e until loop blocks do some code until something happens, that something can be specified
by a e.g a sprite hits the side, or a number gets too big.

e while loop blocks do some code while some thing is still in some state,

e forever loop blocks do some code forever - this is more common than you think, espe-
cially in games for example. With these the main block of code just goes forever and
stops only when something exceptional happens, like lives reaching 0.

15

@ For you to do

1. In your critique group or design journal discuss whether all these types of loop are
actually interchangeable?

2. Is there some sort of redundancy in all of these types of loop?

3. What might be the reason for this?

3.3 Conditionals

Along the way we’ve already seen a different type of control block - a conditional. This is a
block that contains code that will only be done if something specified by the programmer is
true. You’ll notice this block because it begins with if and then there’s some thing that must
be tested to see if its true, this is the actual condition to be tested.

You can see the place for the condition in this picture as a gap after the word if, that gap is
waiting for the programmer to drop in any sort of thing to test.

o™
r--'—]
-
.o
r--'—]
r--f—J
1
Figure 3.2: (Top) An IF block that only runs code if the condition slotted in the diamond

shaped gap passes. (Bottom) An IF-ELSE block, in which the IF section works
like the IF block and the ELSE section runs every time the IF section does not

A conditional (or simply just an if block) is the easiest way to get a computer program make
a decision and only do something in certain cases. They are abundant throughout computer
programming.

In the upper form the code in the ‘mouth’ will only be run if the conditional test passes. If it
doesn’t pass the test none of that code will be run. The rest of the program will carry on as
if that code wasn’t even there.

The if-else form provides a way to be explicit about what to do if the condition doesn’t pass.
If the condition for if doesn’t pass, then the code in the else block runs. Note that the two
blocks are mutually exclusive, if one block runs, the other won’t.

3.4 A creative project

It’s time to put some of our skills and creativity to use and build something brand new. For
this next section we will build something personalised and/or exciting. Choose one of the
activities below and enjoy building something you like!

@ For you to do

1. Make an interactive collage about yourself ¢, using the About Me worksheet for a
bit of guidance.

or

2. Make a music video. Use the Music Video worksheet

“Or an alter-ego you've constructed for the purposes of this exercise!

3.5 In this section we...

@ For you to do

We have encountered blocks and conditionals and use them to make stuff happen over
and over, and only when we want it to. They save us from having to write out repetitive
code.

These two types of blocks are at the heart of controlling the sequence of execution of code
in a program. Practice with loops and conditionals will make you a powerful master of
the things a computer does.

17

4 Re-Use

1 Wisdom

We are like dwarfs standing upon the shoulders of giants, and so able to see
more and see farther than the ancients.

Bernard of Chartres, circa 1130

Reusing code is the cornerstone of productive programming. Reusing libraries and packages
built by other people is very common. Reusing your own code - packing it up into little re-
usable blocks is also very handy. Designing your programs such that you can re-use them will
bring you great benefits. The code will be easier to build and understand, this means you’ll
have less trouble building it, take less time and likely have fewer bugs.

In this section we’ll explore personal re-use of something you built by making our own Scratch
blocks.

4.1 Implementing blocks

Let’s begin by making some blocks of our own.

18

@ For you to do

1. Do the Characters worksheet.
2. Make sure you define two characters and two behaviours per character

e can you make broadcasting work between your characters? ¢

3. Discuss with a friend (or write in your design journal) about how Make a Block
works. Come up with a description for a person new to blocks.

4. When might you use Make a Block?

5. I asserted that re-using blocks results in fewer code bugs. Discuss how that be
justified?

“Don’t panic if this doesn’t work - broadcasting in Scratch highlights a technique in which we make
different processes or scripts ‘talk’ to each other through messages. Its not a core technique by any
means but the metaphor of ‘talking’ is here particularly strong - and it’s quite fun - so its worth a go.

Hopefully through these exercises you’ve seen that code re-use is a timesaver - once you’ve
worked out how to actually implement the code in new block that is.

4.2 Fixing some bugs

Let’s get a bit more practice and intuition about how blocks work by fixing some broken
ones.

@ For you to do

1. Do the Blocks debugging worksheet
2. Discuss the following:

e How big or small do blocks have to be?
e Would you ever want a huge block that did lots, or are smaller specific task
blocks best?

— Is there an optimal level of re-use?

4.3 Abstraction

A big plus to constructing blocks is that they are a tool for abstraction - they allow us to
combine multiple small abilities into one larger, unifiying ability. This means that the amount
of thinking we have to do about how our program works is less. In turn this means it is easier
for us to progam.

19

4.4 A major insight - its blocks all the way down

If the concept of blocks seems like it might be a bit generally applicable, you're getting the
key lesson of this section. All programming is either defining or re-using blocks of code. In
this section with Scratch, its mostly been that our blocks have been a few commands that we
want to re-use a couple of times. At different layers the blocks might be different levels of
organisation of software. Some blocks with a few commands in each might be strung together
into a bigger block called a script or program. A few scripts or programs might be strung
together into a workflow, and there are levels under and above each of those. Beginning to
think of programming at different levels of abstraction is a significant step in building your
conceptual model of how programs and software in general works.

4.5 In this section we ...

i Roundup

In this section we built and used some custom blocks. We’ve seen how they can be reused,
and remixed - a process called abstraction and modularisation. These practices vastly
reduce work for the programmer and increase integrity of our programs.

20

5 Variables

1 Wisdom

There are only two hard things in Computer Science: cache invalidation and
naming things.

Phil Karlton

Programs will often need to keep track of different things that will change during the course of
a program. In this final section we’ll make use of some simple variables and make a program
that truly computes some stuff in response to inputs. We’ll spend most of our time coding
and end up having produced a simple game.

5.1 Variables - names for changing values

Consider a program that counts some things - minimally it is going to need a tally that it can
increase as it finds each new thing. We use code constructs called variables to keep track of
changing things. Variables have two parts - a name and a value. So in our counter example,
the number of things we’ve seen is the value, whatever we decide to call that in our program
is our name.

17

Hold on, isn’t that just algebra? When did this turn into maths? What sort of scam are
you pulling here?

Yes, it is quite like algebra in one sense. But in another sense, the most important sense -
the practical - it’s just names for stuff you don’t know the value of at the start. Another
distinction is that variables don’t need to be just numbers. In other contexts you can keep
track of text, pictures, sounds and even code itself. Don’t get hung up too much on variables
being for numbers.

21

5.2 Building a game

Let’s go crazy and jump straight into building a simple game that will allow us many oppor-
tunities for keeping track of internal data computed by your script in variables.

1 For you to do

1. Do the Maze worksheet

2. Implement some ‘collectable’ sprites ¢ that increment a score variable by one when
your player sprite touches them. Check out the ‘make a variable’ block to do this

3. Implement some moving ‘baddie’ sprites * that decrement a life variable when your
player sprite touches them. Add a “game over” process that stops the game when
you run out of lives.

4. Consider adding a high score table. Discuss with a friend how you might do this
and write your proposal in your design journal ¢7

%Like coins or cherries or something.
®Like ghosts or turtles or something.
“For bonus points, actually implement it.

@ Roundup

In this section we looked at variables. We saw that these are names for data that our
program uses and changes accordingly as the program progresses. We marshalled our
programming skills to create a game.

22

6 Final thought

In this brief guide, we have covered a great deal of ground. The concepts we have discussed
are the very core ones of the daily practice of programming. Every time you start to program
you’ll use reflection, sequences, iteration and re-doing in the problem solving and design phase.
When you come to put code down you’ll implement it with loops and conditionals, variables
and code re-use.

These concepts underpin every programming language. When you move on to build programs
in other languages you’ll use all of them. The implementation of loops, conditionals, blocks
and variables varies from language to language, but underneath they’re all the sames. For you,
all that remains is the challenge of understanding the specific syntax of the new language.

As I wrote at the beginning the process of making a program is slow, so your first scripts in
the new language may not be the most amazing. They’ll improve with practice. You don’t
need to be a genius to program computers, you just need patience with yourself and a little
determination to get there.

Good Luck!

23

Acknowledgements

The exercises, handouts and lesson plans in this document were created by Karen Brennan,
Christan Balch and Michelle Chung at Harvard Graduate School of Education as part of the
Harvard Graduate School of Education Creative Computing Project.

You can see their full and very exciting project at http://scratched.gse.harvard.edu/guide/.

Aspects of it are reused here, as intended and permitted under the Creative Commons 0
licence.

24

http://scratched.gse.harvard.edu/guide/

	What is Programming?
	Reflection
	Reflection and critique as programming tools
	Scratch - our creativity tool
	Sharing Scratch Projects with Studios

	Criticising projects
	What is appropriate criticism?
	Delivering (and receiving) criticism well
	An important note on groups of friends

	In this section we…

	Sequence
	Examining and building a sequence of instructions
	Building a sequence with constraints
	Fixing some bugs

	Loops and Conditionals
	Fixing some bugs
	Types of loop blocks
	Conditionals
	A creative project
	In this section we…

	Re-Use
	Implementing blocks
	Fixing some bugs
	Abstraction
	A major insight - its blocks all the way down
	In this section we …

	Variables
	Variables - names for changing values
	Building a game

	Final thought
	Appendices
	Acknowledgements

