
Beginning Programming with Python

Dan MacLean

May 2022

Table of contents

Motivation 5

1 Working with Data 6
1.1 Using variables as names for data . 7
1.2 Python has three main types of function . 7

1.2.1 Built-In Functions and Operators . 8
1.2.2 Functions from packages . 8
1.2.3 Object Methods . 9

1.3 Objects and types in Python . 10
1.3.1 String Objects . 10
1.3.2 Number Objects . 12

1.4 Quiz . 12

2 Data Structures 14
2.1 Lists are ordered linear collections of items . 14

2.1.1 List use . 15
2.1.2 List methods . 16

2.2 Dictionaries are unordered collections . 16
2.2.1 Dictionary Methods . 17

2.3 Quiz . 17

3 Making Choices and Controlling Program Flow 19
3.1 Conditionals check values and adjust which code is run 19
3.2 Indentation in Python is Pretty Important . 20
3.3 More ifs . 21

3.3.1 Testing equality . 22
3.4 Logical operators in tests . 22

3.4.1 What is True and what is False . 22
3.5 That’s not not what I meant . 23
3.6 Quiz . 23

4 Repeating actions with Loops 25
4.1 For Loops . 26

4.1.1 Choosing loop variable names . 28
4.1.2 Loop variable lifespan . 29
4.1.3 Looping over a list . 29

2

4.1.4 Looping over a range of numbers . 30
4.1.5 Looping over a dictionary . 30

4.2 While Loops . 31
4.3 Quiz . 32

5 User Functions 34
5.1 Building your own function . 34
5.2 Composing functions . 36
5.3 Variables inside and outside Functions . 36
5.4 Designing programs to use functions . 37
5.5 Quiz . 37

6 Working with Python Packages 40
6.1 Using and Installing Packages. 40
6.2 The vcfpy Package . 41

6.2.1 VCF files - a brief introduction . 41
6.2.2 The vcf.Reader object . 42
6.2.3 The vcf.Record object . 43
6.2.4 Object Attributes . 43

6.3 Quiz . 44

7 Putting code into scripts 45
7.1 The script header . 45
7.2 The filename extension . 46
7.3 Running a python script from the command line 46
7.4 Getting Options from the Command Line . 46
7.5 Quiz . 47

8 Putting It All Together 48
8.1 A Challenge in Python . 48

Appendices 48

A Installing what you need 49
A.1 Prerequisites . 49
A.2 Installing Python 3 with Anaconda . 49

A.2.1 Note for macOS users . 49
A.2.2 Note for Windows users . 49
A.2.3 Note for Linux Users . 50

A.3 Starting a Jupyter Notebook . 50
A.3.1 macOS . 50
A.3.2 Windows . 50
A.3.3 Linux . 50

3

A.4 Installing Python Packages with conda . 51
A.5 Installing a Text Editor . 51

B Acknowledgements 52

4

Motivation

Programming is a pretty weird skill. It boils down to shouting at a computer to make it do
stuff for you. So why would you want to learn to do it? There are plenty of reasons, some
good and some bad. Some good ones that apply to working in biology and bioinformatics are
time-saving, turning your computer from a limited ‘appliance’ to a general ‘power tool’ for
your research and because it’s a skill that can help you develop a more precise, disciplined and
abstract way of thinking.

The main obstacle that most people encounter when learning to program is the surprisingly
wide range of concepts and implementations of concepts that you need to know in order to
achieve something. This can make it intimidating and tedious for those starting out.

The aim of this course is to introduce you to just enough of these to enable you to do useful
stuff with Python. The things you’ll learn here will seem quite abstract and disconnected at
first but hopefully by the end of the course you’ll be able to string them together to make
something useful - and understand what’s going on.

In this course, we’ll use Python 3 - a widely used very powerful but (all things considered)
user-friendly language that suits beginners and experts alike.

We’ll use the bare-bones of Python 3. Python is a very broad language with a lot of function-
ality, a lot of it in optional packages that you can install whenever you need them. We’ll only
touch the surface of what is possible - but what we learn will be foundation enough to build
pretty much anything on.

By the end of this course you’ll have seen and used enough Python to be able to go forward and
be able to start to tackle any sort of programming challenge. You’ll still need your problem
solving skills, tenacity and determination to do tackle your future challenges, but at least you’ll
know Python.

Happy Programming!

5

1 Working with Data

1. Questions:

• How do I deal with data in Python?

2. Objectives:

• Defining variables and using them in functions
• Using simple data objects: strings and numbers
• Using package functions and object methods

3. Keypoints:

• variables are handy names for data objects
• data objects are used by functions
• functions can be stored in packages
• methods available depend on the object we’re talking about

In any Python program we will have some data and some objective to achieve - something to
do with that data. Python provides many data types and many ways of working with that
data.

Manipulating data is done with functions. Data is stored in objects. In this section we’ll look
at functions and objects and their interaction.

Let’s see the simplest example of this workflow, let’s take a string (a text carrying object data
type) and use it in a function.

print("Hello, world!")

Hello, world!

In this example the string "Hello, World!", is being given to the print() function. Functions
are bits of code that do stuff to data. The print() function just prints the data that you
pass it to the screen. We pass data to functions by putting the data in the brackets after the
function name.

6

1.1 Using variables as names for data

We don’t usually use data directly. Instead we use a name that refers to a piece of data - a
variable. Variables are just names that represent a bit of data. It’s called a variable because
the data the variable is associated with can change. We assign a name to data by using
the assignment symbol the = sign. The data associated with a variable can be changed by
re-assignment, allowing us to reuse the name.

We can use variables as if they are the data they point to

x = "Hello, world!"
print(x)

x = 100
print(x)

Hello, world!
100

And variables are independent of one another, actions on one don’t affect another

weight_kg = 65

weight_pounds = 2.2 * weight_kg

print(weight_kg)

print(weight_pounds)

65
143.0

1.2 Python has three main types of function

Python is full of functions. So many in fact that coming up with names can be a problem!
This is a serious issue as you have to refer to functions by name. To resolve this problem
Python keeps its functions in different places in its library, and the way we call the function
changes depending on where the function ‘lives’. There are three basic function types:

• Built-In Functions and Operators

7

• Package Functions
• Object Methods

1.2.1 Built-In Functions and Operators

Python has some functions that can be called directly from anywhere in a program. These are
listed here https://docs.python.org/3.3/library/functions.html. We’ve already seen print()
‘and there are some common ones we’ll come across later. You can spot a built-in function
because it has a single-word name followed by brackets.

Related to built-in functions are operators. The things you’ll use most are the mathematical
operators that work as you would expect from your knowledge of maths. So they include
things like, + , -, *, / etc.

print(1 + 1)
print(2 * 2)
print(3 - 3)
print(4 / 4)

2
4
0
1.0

Some operators change what they do depending on the things you ask them to operate on.
For instance, we can add strings?!

print("Hello" + "World!")

HelloWorld!

This is supposed to be a way of making the language more intuitive and readable at the user
end of things. Most times you see operators, they should be pretty obvious.

1.2.2 Functions from packages

Another source of functions is external packages - extensions to Python for use in particular
problem domains. We can load in a package using import. Let’s import the random Python
package that provides functions for generating random numbers.

8

import random

We can access the functions in this package by using the package name and the dot (.) syntax
and the function name. Let’s call the numpy function randrange() which gives us a random
number between two limits.

number = random.randrange(1, 10)

print(number)

9

1.2.3 Object Methods

Lumps of data are represented in the computer in things called objects. An object is basically
a bit of data with some functions attached. This means each piece of data comes with the
code to manipulate it. These attached functions are called methods.

We access data’s methods using the . syntax again, so this time you have variable_name.method(),
read this as you telling the object the variable points at to do method() to itself. This is
simpler than it sounds.

Consider a variable x pointing to a string object. We might use it with .capitalize() as
follows

x = "hello, world!"

print(x.capitalize())

Hello, world!

This does mean that the methods are closely tied to the data. Look what happens when we
try to use .capitalize() on a number

y = 100

print(y.capitalize())

Error in py_run_string_impl(code, local, convert) :
AttributeError: 'int' object has no attribute 'capitalize'

9

Python just throws an error. Basically this error is saying that int (integer, a number object
) doesn’t have a method called capitalize.

Loosely, methods are functions that only apply to particular object types.

We need to know what methods an object has before we can work on them. We can find this
by reading the documentation for the object type. And Python will give us the type with the
type() function

print(type(x))

<class 'str'>

We can see that x contains a str - a string. The easiest place to find the Python documentation
is online. Googling Python 3 str shows us this page https://docs.python.org/3/library/stdtypes.html#text-
sequence-type-str, which shows us all the String methods. This works well for finding all
methods for objects of other types.

1.3 Objects and types in Python

Let’s examine some object types.

Python knows many types of object, most things are an object of some type. Three common
object types are:

• strings
• integer numbers
• floating point numbers

1.3.1 String Objects

The term ‘string’ is computer jargon for text data, usually a single lump of text data treated
as a whole. To create a strings we simply have to add single or double quotes around some
text, for example:

weight_kg_text = 'weight in kilograms'

Having actual numbers in there doesn’t make a string a number type - the following is still a
string - it just happens to be made up of number like characters. Let’s see what happens if
we try and treat it like a number.

10

phone_number = "01818118181"

print(phone_number * 2)

0181811818101818118181

Here the * operator has modified itself to work on a string and repeated the string! Usu-
ally though the program will crash out, giving an operator the wrong data will confuse the
program.

1.3.1.1 Indexing a string (Slicing)

We can access a single character in a string using indexing - basically asking for a character
at a position. The syntax uses the square brackets.

print(phone_number[2])

8

Note that using the index [2] gives us the third character - computer languages tend to count
from 0.

We can get a longer subsection of a string using indexing as well - this is a technique that
accesses a part of the data given a start and end point along the string.

dialling_code = phone_number[0:3]
print(dialling_code)

018

We just use the square brackets to indicate the start and stop points of the slice we want to
extract, literally [start:end]. The start here is 0 meaning the first character, the end here
is 3, but it means up to but not including the end.

print(dialling_code)

018

11

That’s why we only get the first three characters from the string and not 4 ie 0,1,2,3. The
way to remember this is that the length of the resulting slice is end - start.

There are many string operations and methods, you can see them in the documentation at
https://docs.python.org/3/library/stdtypes.html#textseq

1.3.2 Number Objects

Numbers in Python come in two types, whole numbers (called integers) and numbers with a
decimal part (called floating point numbers).

In the example above, variable weight_kg has an integer value of 65. To create a variable
with a floating point value, we can execute:

weight_kg = 65.0

The difference is important in some cases. You can convert type explicitly using the int()
and float() functions.

print(float(1) + 3)
print(int(10.0 / 3.0))

4.0
3

1.4 Quiz

1. What values do the variables mass and age have after each statement in the following
program? Test your answers by executing the commands.

mass = 47.5
age = 122
mass = mass * 2.0
age = age - 20

2. What does the following program print out?

12

first, second = 'Grace', 'Hopper'
third, fourth = second, first
print(third, fourth)

3. Recall that a section of a string is called a slice. Work on the slices below.

element = 'oxygen'
print('first three characters:', element[0:3])
print('last three characters:', element[3:6])

• What is the value of element[:4]?
• What about element[4:]?
• Or element[:]?
• What is element[-1]?
• What is element[-2]?
• Given those answers, explain what element[1:-1] does.

4. Fix the capitalisation in messy_string

messy_string = "OH mY, ThESE LEtters Are ALL OVER The PLace!"

Hint: Think about standardising the letters by e.g making all one case, then fixing the capi-
talization from there.

5. Check out the math package. https://docs.python.org/3/library/math.html and import
it.

• What is the arc sine of -1, 0, 1 in radians?
• How many degrees in arcsin(−1) radians?

13

2 Data Structures

1. Questions:

• How do I arrange and process lots of items of data in Python?

2. Objectives:

• Create and work with lists and dicts

3. Keypoints:

• A list is a collection object that is a linear collection of other objects
• A dict is a collection object that is a group of key objects that point to values

Data structures are collection types that group lots of data into a single object and make
working with lots of data easier. Python has some built in data structures we can use. In
this section we’ll look at using some of the most common and fundamental ones. As you gain
exeperience with Python, you’ll find that many other more complex data structures are made
out of these.

2.1 Lists are ordered linear collections of items

The simplest data structure is a list. We can create a list simply by enclosing our data in
square brackets.

my_list = [1,3,5,7]
print(my_list)

[1, 3, 5, 7]

More often, though, we’ll get a list as the result of a function. Recall the random library we
used earlier, it can sample k items from a list.

14

import random
selected = random.sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=3)

print(selected)

['red', 'red', 'red']

Here we get a list of integers. The point being it is now a collection of data that we can refer
to as a single entity.

Lists can mix up any sort of data type,

numbers_and_letters = [1,2, 'three', 'IV', 5.0]
print(numbers_and_letters)

[1, 2, 'three', 'IV', 5.0]

including other lists.

list_of_lists = [[1,2,3], ["a","b","c"]]

print(list_of_lists)

[[1, 2, 3], ['a', 'b', 'c']]

2.1.1 List use

List elements can be accessed using indexing, like with strings.

print(numbers_and_letters[0])
print(numbers_and_letters[2:4])

1
['three', 'IV']

Indexing an element returns the whole element - so if that element happens to be a list itself
- you get a whole list back

15

print(list_of_lists[1])

['a', 'b', 'c']

To get at a single element in this case you must use multiple sets of square brackets, one for
each list.

print(list_of_lists[0][1])
print(list_of_lists[1][0])

2
a

2.1.2 List methods

As they’re still a regular Python object, just like strings or they have lots of methods. Much
of what you’ll want to do with a list is accomplished with methods. Again, there are many
- here’s a list of useful ones https://www.w3schools.com/python/python_ref_list.asp. As a
single example from the list, let’s look at .append(), which is used to stick something on the
right hand side of the list.

numbers_and_letters.append("ninety")
print(numbers_and_letters)

[1, 2, 'three', 'IV', 5.0, 'ninety']

2.2 Dictionaries are unordered collections

Another very common data structure is a dictionary. A dictionary is a data structure that
has many unique keys, each of which refers to a bit of other data called a value. We can
construct them using the curly brackets and the key/value pairs

my_dict = {
"key1" : "value1",
"key2" : "value2"

}

16

https://www.w3schools.com/python/python_ref_list.asp

print(my_dict)

{'key1': 'value1', 'key2': 'value2'}

Note the order in the dictionary isn’t preserved. The information is stored according to an
internal algorithm, not the order the informaion is added. We can use the square brackets to
get a single value, but as a dictionary has no order and therefore no numeric index, we must
use the key as the index.

print(my_dict["key1"])

value1

Dictionaries are useful when you want to ask for a bit of data by some name, rather than by
its position in a list.

Dictionaries can hold anything in their values. But keys are restricted to particular datatypes.
Strings and numbers are good keys, lists are not allowed.

print({ ["list_key", 1, 2] : ["some data"] })

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

2.2.1 Dictionary Methods

As with lists there are methods on Python Dictionaries. Here’s a useful list https://www.
w3schools.com/python/python_ref_dictionary.asp. These are mostly related to getting items
on and off the list, we’ll see some when we use dictionaries in loops later.

2.3 Quiz

1. Given the list below, use slicing to access only the last 2 entries.

17

https://www.w3schools.com/python/python_ref_dictionary.asp
https://www.w3schools.com/python/python_ref_dictionary.asp

list_for_slicing = [["fluorine", "F"],
["chlorine", "Cl"],
["bromine", "Br"],
["iodine", "I"],
["astatine", "At"]]

2. Modify list_for_slicing using the .reverse() method. Verify that it is reversed as
you expected.

3. Can you work out how to correct the wrong data in the dictionary below? Try to think of
a way that doesn’t involve re-writing the whole dictionary. Hint: can you assign straight
to a key?

seasons = {
'spring' : ['mar', 'apr', 'may'],
'autumn' : ['jun', 'jul', 'aug'],
'winter' : ['dec', 'jan', 'feb']

}

4. Add in the missing season.

18

3 Making Choices and Controlling Program
Flow

1. Questions:

• How do we get Python to make choices?

2. Objectives:

• Use and understand if and else
• Use and understand boolean condition operators

3. Keypoints:

• Conditions let us test a value and run different bits of code dependently
• Whitespace is an important structuring element in Python code.

How can we use Python to automatically recognize differences in data such that it can change
what code is run depending on the data and take a different action for each? In this chapter,
we’ll learn how to write code that runs only when certain conditions are true.

3.1 Conditionals check values and adjust which code is run

We can ask Python to take different actions, depending on a condition, with an if statement:

num = 37
if num > 100:

print('greater')
else:

print('not greater')

not greater

19

The second line of this code uses the keyword if to tell Python that we want to make a choice.
If the test that follows the if keyword is true, the body of the if (i.e., the lines indented
underneath it) are executed. If the test is false, the body of the else is executed instead.
Only one or the other is ever executed:

The diagram below shows how this choice is being made.

Figure 3.1: Executing a Conditional

3.2 Indentation in Python is Pretty Important

The layout of code in Python is actually pretty important. The whitespace is structural
and the amount of it tells us something about where we are in a program. Whitespace is
particularly important in if . By convention the indent under each new if or else should be
four spaces.

if x > y:
do_something()

An if within an if needs further indentation - it must also be four spaces further in, so a
total of eight spaces.

if x > 100:
print("bigger than 100")
if x < 120:

print("but smaller than 120")
else:

print("and bigger than 120")
else:

print("x is too small")

This rule propagates, so a third level would need twelve spaces etc.

Note how the code above is structured now. Code at the same indentation is in the same group
of code - at the same level. We can easily see which if and else go together as pairs. This

20

is the point of using whitespace like this - it gives us clean and visually consistent programs
which the designers of Python value.

A common gotcha is that you always have to undo the indent at the end of the block. The first
bit of the rest of the code must always be fully at the left of the page or Python will interpret
the code incorrectly.

These indentation rules apply in other places in Python code and we’ll come across them in
due course.

3.3 More ifs

Conditional statements don’t have to include an else. If there isn’t one, Python simply does
nothing if the test is false:

num = 53
print('before conditional...')
if num > 100:

print(num,' is greater than 100')
print('...after conditional')

before conditional...
...after conditional

We can also chain several tests together using elif, which is short for “else if”. The following
Python code uses elif to print the sign of a number.

num = -3

if num > 0:
print(num, 'is positive')

elif num == 0:
print(num, 'is zero')

else:
print(num, 'is negative')

-3 is negative

Note that the if and elif bits are mutually exclusive. Only one of them ever gets executed.

21

3.3.1 Testing equality

Note that to test for equality we use a double equals sign == rather than a single equals sign
= which is already used to assign values.

3.4 Logical operators in tests

Python has all the standard logical operators that let us combine tests. Most commonly there
is and and or. An and operator is only true if both parts are true:

if (1 > 0) and (-1 > 0):
print('both parts are true')

else:
print('at least one part is false')

at least one part is false

while or is true if at least one part is true:

if (1 < 0) or (-1 < 0):
print('at least one test is true')

at least one test is true

3.4.1 What is True and what is False

True and False are special words in Python called booleans, which represent truth values. A
statement such as 1 < 0 returns the value False, while -1 < 0 returns the value True.

True and False booleans are not the only values in Python that are true and false. In fact,
any value can be used in an if or elif.

if '':
print('empty string is true')

if 'word':
print('word is true')

if []:
print('empty list is true')

if [1, 2, 3]:

22

print('non-empty list is true')
if 0:

print('zero is true')
if 1:

print('one is true')

word is true
non-empty list is true
one is true

It may seem strange to set things up this way, but in Python in practice it allows for some
nice and easy to read and write constructions.

3.5 That’s not not what I meant

Sometimes it is useful to check whether some condition is not true. The Boolean operator not
can do this explicitly.

if not '':
print('empty string is not true')

if not 'word':
print('word is not true')

if not not True:
print('not not True is true')

empty string is not true
not not True is true

3.6 Quiz

1. Consider this code:

if 4 > 5:
print('A')

elif 4 == 5:
print('B')

elif 4 < 5:

23

print('C')

Which of the following would be printed if you were to run this code? Why did you pick this
answer?

• A
• B
• C
• B and C

2. Consider this code:

if 4 > 5:
print('A')

if 4 <= 5:
print('B')

if 4 < 5:
print('C')

Which of the following would be printed if you were to run this code? Why did you pick this
answer?

• A
• B
• C
• B and C

3. Consider this code:

if 4 > 5:
print('A')

elif 4 <= 5:
print('B')

elif 4 < 5:
print('C')

Which of the following would be printed if you were to run this code? Why did you pick this
answer?

• A
• B
• C
• B and C

24

4 Repeating actions with Loops

1. Questions:

• How can we repeat code an arbitrary number of times?

2. Objectives:

• Understand the for loop and the while loop
• Looping a specified number of times and with a range of numbers using range()

3. Keypoints

• for loops repeat code for each element in a collection
• while loops repeat code until a condition changes

To do that, we’ll have to teach the computer how to repeat things.

An example task that we might want to repeat is printing each character in a word on a line
of its own.

We can access a character in a string using its index. For example, we can get the first character
of the word 'lead', by using word[0]. One way to print each character is to use four print
statements:

word = 'lead'
print(word[0])
print(word[1])
print(word[2])
print(word[3])

l
e
a
d

This is a bad approach for two reasons:

25

1. It doesn’t scale: if we want to print the characters in a string thats hundreds of letters
long, we’d be better off just typing them in.

2. It’s fragile: if we give it a longer string, it only prints part of the data, and if we give it
a shorter one,it produces an error because we’re asking for characters that don’t exist.

word = 'tin'
print(word[0])
print(word[1])
print(word[2])
print(word[3])

IndexError Traceback (most recent call last)
<ipython-input-3-7974b6cdaf14> in <module>()

3 print(word[1])
4 print(word[2])

----> 5 print(word[3])

IndexError: string index out of range

4.1 For Loops

Instead we can use a loop - a construct that moves through a collection of data taking one bit
at a time. Here’s a loop in action

word = 'lead'
for char in word:

print(char)

l
e
a
d

This is shorter, certainly shorter than something that prints every character in a hundred-letter
string and more robust as well. Note the indentation rules apply in the for loop.

Also, see how the same code works if we change the length of the word

26

word = 'oxygen'
for char in word:

print(char)

o
x
y
g
e
n

The improved version uses a for loop to repeat code in this case print(), once for each thing
in a sequence. The general form of a loop is:

Using the oxygen example above, the loop might look like this:

Figure 4.1: loop_image

27

where each character (char) in the variable word is looped through and printed one character
after another. The numbers in the diagram denote which loop cycle the character was printed
in (1 being the first loop, and 6 being the final loop).

We can call the loop variable anything we like, but there must be a colon at the end of the line
starting the loop, and we must indent anything we want to run inside the loop. Unlike many
other languages, there is no command to signify the end of the loop body (e.g. end for); what
is indented after the for statement belongs to the loop.

4.1.1 Choosing loop variable names

In the example above, the loop variable was given the name char as a mnemonic; it is short
for ‘character’. We can choose any name we want for variables. We might just as easily have
chosen the name banana for the loop variable, as long as we use the same name when we
invoke the variable inside

word = 'oxygen'
for banana in word:

print(banana)

o
x
y
g
e
n

It is a good idea to choose variable names that are meaningful, otherwise it would be more
difficult to understand what the loop is doing.

Here’s another loop that repeatedly updates a variable:

length = 0
for vowel in 'aeiou':

length = length + 1
print('There are', length, 'vowels')

There are 5 vowels

28

It’s worth tracing the execution of this little program step by step.Since there are five characters
in 'aeiou', the statement on line 3 will be executed five times. The first time around,length
is zero (the value assigned to it on line 1) and vowel is 'a'.

The statement adds 1 to the old value of length, producing 1, and updates length to refer
to that new value.

The next time around,vowel is 'e' and length is 1, so length is updated to be 2. After three
more updates, length is 5; since there is nothing left in 'aeiou' for Python to process, the
loop finishes and the print statement on line 4 tells us our final answer.

4.1.2 Loop variable lifespan

Note that a loop variable is just a variable that’s being used to record progress in a loop. It
still exists after the loop is over, and we can re-use variables that were previously defined as
loop variables:

letter = 'z'
for letter in 'abc':

print(letter)
print('after the loop, letter is', letter)

a
b
c
after the loop, letter is c

This means your loop variable should ideally not be something you intend to use elsewhere.

Note also that finding the length of a string is such a common operation that Python actually
has a built-in function to do it called len:

print(len('aeiou'))

5

4.1.3 Looping over a list

Looping over a Python list is very common. The syntax is identical.

29

numbers_and_letters = [1,2, 'three', 'IV', 5.0]

for item in numbers_and_letters:
print(item)

1
2
three
IV
5.0

4.1.4 Looping over a range of numbers

What if we don’t want to do every item in a collection, or if we want to do something a set
number of times? We can create a collection that has the things we need.

Python has a built-in function called range() that creates a sequence of numbers. range()
can accept 1, 2, or 3 parameters.

• If one parameter is given, range creates an array of that length, starting at zero and
incrementing by 1. For example, range(3) produces the numbers 0, 1, 2.

• If two parameters are given, range starts at the first and ends just before the second,
incrementing by one. For example, range(2, 5) produces 2, 3, 4.

• If range is given 3 parameters, it starts at the first one, ends just before the second one,
and goes up in steps of the third one. For example range(3, 10, 2) produces 3, 5,
7, 9.

4.1.5 Looping over a dictionary

You can loop over the keys in the dictionary in the same way as for the list, explicitly accessing
the value using the key.

d = {'x': 1, 'y': 2, 'z': 3}

for key in d:
print(key, 'has value', d[key])

x has value 1
y has value 2
z has value 3

30

Note that as dicts are intrinsically disordered, unlike lists the order they will be accessed in
this way is arbitrary. If you care about order you can make a list of the keys using the keys()
method and loop over that instead. Here we make a list of keys and sort it, then loop over the
sorted key. Note the difference in the result to that above.

d = {'x': 1, 'y': 2, 'z': 3}

frozen_keys = sorted(d.keys())

for key in frozen_keys:
print(key, 'has value', d[key])

x has value 1
y has value 2
z has value 3

Python can also be made to give you the key - value pairs if you want them, so you don’t
need to explicitly get the value each time. For this we use the .items() method and two loop
variables. The first loop variable gets the key, the second the value.

d = {'x': 1, 'y': 2, 'z': 3}

for key, value in d.items():
print(key, 'has value', value)

x has value 1
y has value 2
z has value 3

4.2 While Loops

A different sort of loop is the while loop. This loop repeats while something is in some state
- usually the True state.

i = 1
while i < 6:
print(i)
i += 1

31

1
2
3
4
5

The while loop is somewhat rare in Python, but does get used from time to time.

4.3 Quiz

1. Using range, write a loop to print the first 3 positive integers.

2. Exponentiation is built into Python, 32 would be 3 ** 2. Write a loop that calculates
the same result as 5 ** 3 using multiplication (and without exponentiation).

print(5 ** 3)

125

3. Knowing that two strings can be concatenated using the + operator, write a loop that
takes a string and produces a new string with the characters in reverse order, so 'Newton'
becomes 'notweN'.

4. The built-in function enumerate() takes a sequence (e.g. a list) and generates a new
sequence of the same length. Each element of the new sequence is a pair composed of
the index (0, 1, 2,…) and the value from the original sequence:

fruits = ['apple', 'banana', 'grapes', 'pear']
for position, name in enumerate(fruits):
print("The ", position, "fruit is ", name)

The 0 fruit is apple
The 1 fruit is banana
The 2 fruit is grapes
The 3 fruit is pear

The function shuffle() in the random package rearranges a list in place (meaning it changes
the original object, so you don’t have to use a fresh variable name. Use the enumerate() and
random.shuffle() to mix up the list below and work out where the digit 100 appears in the
list.

32

big_numbers = list(range(1000))

33

5 User Functions

1. Questions:

• How can I re-use bits of my own code?

2. Objectives:

• Create and use our own functions
• Compose our own functions from other functions we made

3. Keypoints:

• Functions help us keep our programs concise and compact
• Functions make coding much easier by reducing debugging and allowing us to re-use

code we’ve already written

In order to write concise readable and bug-free programs its a good idea to do as little coding
as possible in a program. To this end we follow a principle called DRY - don’t repeat yourself!
Meaning that we don’t re-write code that does the same stuff in mulitple places in a program,
we put it in one place and refer to it from there. This is the basis of good programming

5.1 Building your own function

So we’d like a way to package our code so that it is easier to reuse and Python provides for
this by letting us define our own functions. In use these work just like all the other functions
we’ve already seen.

Let’s look at a user function by defining a function fahr_to_celsius that converts tempera-
tures from Fahrenheit to Celsius:

def fahr_to_celsius(temp):
return ((temp - 32) * (5/9))

The function definition opens with the keyword def followed by the name of the function
(fahr_to_celsius) and a list of parameter names in brackets (temp). The parameter names
are actually variables that carry the data given in the function call. The body of the function,
the statements that are executed when it runs is indented below the definition line. The body

34

Figure 5.1: The Blueprint for a Python Function

concludes with a return keyword followed by the return value, the thing the function sends
back to whatever called it.

When we call the function, the values we pass to it are assigned to those parameter variables
so that we can use them inside the function. Inside the function, we use a return statement
to send a result back to the code that asked for it.

Let’s try running our function.

fahr_to_celsius(32)

0.0

This command should call our function, using “32” as the input and return the function
value.

In fact, calling our own function is no different from calling any other function:

print('freezing point of water:', fahr_to_celsius(32), 'C')
print('boiling point of water:', fahr_to_celsius(212), 'C')

freezing point of water: 0.0 C
boiling point of water: 100.0 C

We’ve successfully called the function that we defined, and we have access to the value that
we returned.

35

5.2 Composing functions

Now that we’ve seen how to turn Fahrenheit into Celsius, we can also write the function to
turn Celsius into Kelvin:

def celsius_to_kelvin(temp_c):
return temp_c + 273.15

print('freezing point of water in Kelvin:', celsius_to_kelvin(0.))

freezing point of water in Kelvin: 273.15

What about converting Fahrenheit to Kelvin? We could write out the formula, but we don’t
need to. Instead, we can compose the two functions we have already created:

def fahr_to_kelvin(temp_f):
temp_c = fahr_to_celsius(temp_f)
temp_k = celsius_to_kelvin(temp_c)
return temp_k

print('boiling point of water in Kelvin:', fahr_to_kelvin(212.0))

boiling point of water in Kelvin: 373.15

This is our first taste of how larger programs are built, we define basic operations, then combine
them in ever-large chunks to get the effect we want.

5.3 Variables inside and outside Functions

The function is insulated from the rest of the program. Things that happen in there don’t
affect what goes on elsewhere. Meaning we can re-use variable names inside the function that
we used elsewhere without polluting them. Look what happens when the following piece of
code is run

f = 0
k = 0

def f2k(f):
k = ((f-32)*(5.0/9.0)) + 273.15

36

return k

print(f2k(8))
print(f2k(41))
print(f2k(32))

print(k)

259.81666666666666
287.15
273.15
0

k is 0 because the k inside the function f2k doesn’t know about the k defined outside the
function.

5.4 Designing programs to use functions

It’s a good programming strategy to think about building functions into programs. Try to
look for places where you’re doing the same set of commands over again - that would be a
prime target for turning into a function. Think also about places where you could just refer
to an operation by name - something like: count_gc for example. If you spot places like this
its a good idea to put the code into a function since it will make your program more readable.
When you find you’re re-using the same functions in mulitple programs, then you’re ready to
start putting them in external files and re-using them from there.

5.5 Quiz

1. “Adding” two strings produces their concatenation 'a' + 'b' is 'ab'. Write a function
called fence that takes two parameters called original and wrapper and returns a new
string that has the wrapper character at the beginning and end of the original. A call
to your function should look like this:

print(fence('name', '*'))

2. Note that return and print are not interchangeable.print is a Python function that
prints data to the screen. It enables us, users, see the data. return statement, on the
other hand, makes data visible to the program.

37

Let’s have a look at the following function:

def add(a, b):
print(a + b)

What will we see if we execute the following commands?

A = add(7, 3)
print(A)

3. If the variable s refers to a string, then s[0] is the string’s first character and s[-1] is
its last. Write a function called outer that returns a string made up of just the first and
last characters of its input. A call to your function should look like this:

print(outer('helium'))

4. Rescaling an Array

Write a function rescale that takes a list as input and returns a corresponding list of values
scaled to lie in the range 0.0 to 1.0.

(Hint: If L and H are the lowest and highest values in the original array, then the replacement
for a value v should be (v-L) / (H-L). The max() function returns the biggest value in a
list)

5. Consider this code:

a = 3
b = 7

def swap(a, b):
temp = a
a = b
b = temp

swap(a, b)

print(a, b)

Which of the following would be printed if you were to run this code? Why did you pick this
answer?

38

1. 7 3
2. 3 7
3. 3 3
4. 7 7

39

6 Working with Python Packages

1. Questions:

• How can I use the wide range of code that other people have already written?

2. Objectives:

• Install and Import packages using package managers
• Use vcfpy - a genomics related package
• Examine objects from this package

3. Keypoints:

• Packages that come from external sources need to be installed
• There are many, many packages
• Packages provide methods and objects of varying types
• Good package use relies on good package documentation

Packages are an important part of the Python ‘ecosystem’ that let us use a wide variety of
code written by other people. Good packages provide functions, objects and methods that
make working in a particular problem domain a lot easier.

6.1 Using and Installing Packages.

We’ve already seen how to load in packages using the import statement. Here we load the builit-
in sys package which has methods for working with the underlying system - the platform is
the name of the operating system this code is running on.

import sys
print(sys.platform)

darwin

40

Some packages, like sys come as standard when Python is installed, some come from external
sources and must be installed individually. There are multiple methods of installing packages.
Assuming you set up Python using Anaconda for this book then you can use conda itself.
Another more general way of installing packages is from PyPI, the Python Package Index.

None of these are done from within Python itself, they must be done from the regular command-
line. The general form is:

conda install package_name
pip install package_name

6.2 The vcfpy Package

VCF files (variant call format) are files that describe SNPs and small indels in alignments
from high-throughput sequencing data. The vcfpy package provides a lot of functionality for
working with such files and the record they contain.

6.2.1 VCF files - a brief introduction

A VCF file is a column format file where each row represents a SNP/Indel record and the
columns represent things describing it like Chromosome, Position, Reference Genome Allele,
Alternative Genome Allele etc. Here’s what one record looks like, split over a few lines.

Table 6.1: Table continues below

CHROM POS ID REF ALT QUAL FILTER
20 14370 rs6054257 G A 29 PASS

Table 6.2: Table continues below

INFO FORMAT NA00001 NA00002
NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51

NA00003
1/1:43:5:.,.

41

There’s a lot of information in that one record, and each file has many tens of thousands
of records! We wouldn’t want to try and process tens of thousands manually. Let’s look at
loading in a file and looping through each record using the vcfpy package.

We’ve already seen that packages have functions we can call, and that doing so can sometimes
return objects of new types. We’ll use that pattern now to start processing a VCF file.

6.2.2 The vcf.Reader object

The first package function we’ll need to use is vcf.Reader which opens and connects to a file
but doesn’t do anything with it. It gives us a reader object we can use to access the file. We
just need the file name that we wish to open.

import vcfpy
vcf_reader = vcfpy.Reader(open('/Users/macleand/Desktop/example.vcf', 'r'))

Now we can go ahead and extract the VCF records by using the reader object we created in
a loop

for record in vcf_reader:
print(record)
print(type(record))

Record('20', 14370, ['rs6054257'], 'G', [Substitution(type_='SNV', value='A')], 29, ['PASS'], {'NS': 3, 'DP': 14, 'AF': [0.5], 'DB': True, 'H2': True}, ['GT', 'GQ', 'DP', 'HQ'], [Call('NA00001', {'GT': '0|0', 'GQ': 48, 'DP': 1, 'HQ': [51, 51]}), Call('NA00002', {'GT': '1|0', 'GQ': 48, 'DP': 8, 'HQ': [51, 51]}), Call('NA00003', {'GT': '1/1', 'GQ': 43, 'DP': 5, 'HQ': [None, None]})])
<class 'vcfpy.record.Record'>
Record('20', 17330, [], 'T', [Substitution(type_='SNV', value='A')], 3, ['q10'], {'NS': 3, 'DP': 11, 'AF': [0.017]}, ['GT', 'GQ', 'DP', 'HQ'], [Call('NA00001', {'GT': '0|0', 'GQ': 49, 'DP': 3, 'HQ': [58, 50]}), Call('NA00002', {'GT': '0|1', 'GQ': 3, 'DP': 5, 'HQ': [65, 3]}), Call('NA00003', {'GT': '0/0', 'GQ': 41, 'DP': 3})])
<class 'vcfpy.record.Record'>
Record('20', 1110696, ['rs6040355'], 'A', [Substitution(type_='SNV', value='G'), Substitution(type_='SNV', value='T')], 67, ['PASS'], {'NS': 2, 'DP': 10, 'AF': [0.333, 0.667], 'AA': 'T', 'DB': True}, ['GT', 'GQ', 'DP', 'HQ'], [Call('NA00001', {'GT': '1|2', 'GQ': 21, 'DP': 6, 'HQ': [23, 27]}), Call('NA00002', {'GT': '2|1', 'GQ': 2, 'DP': 0, 'HQ': [18, 2]}), Call('NA00003', {'GT': '2/2', 'GQ': 35, 'DP': 4})])
<class 'vcfpy.record.Record'>
Record('20', 1230237, [], 'T', [], 47, ['PASS'], {'NS': 3, 'DP': 13, 'AA': 'T'}, ['GT', 'GQ', 'DP', 'HQ'], [Call('NA00001', {'GT': '0|0', 'GQ': 54, 'DP': 7, 'HQ': [56, 60]}), Call('NA00002', {'GT': '0|0', 'GQ': 48, 'DP': 4, 'HQ': [51, 51]}), Call('NA00003', {'GT': '0/0', 'GQ': 61, 'DP': 2})])
<class 'vcfpy.record.Record'>
Record('20', 1234567, ['microsat1'], 'GTCT', [Substitution(type_='DEL', value='G'), Substitution(type_='INDEL', value='GTACT')], 50, ['PASS'], {'NS': 3, 'DP': 9, 'AA': 'G'}, ['GT', 'GQ', 'DP'], [Call('NA00001', {'GT': '0/1', 'GQ': 35, 'DP': 4}), Call('NA00002', {'GT': '0/2', 'GQ': 17, 'DP': 2}), Call('NA00003', {'GT': '1/1', 'GQ': 40, 'DP': 3})])
<class 'vcfpy.record.Record'>

This does the code loop for every record in the file. And note how print() gives only a rough
printout of the object, not every bit of information.

42

6.2.3 The vcf.Record object

Every time we loop we get a new vcf.Record object. This is a special sort of object provided by
the vcfpy package that represents the VCF record. We already saw how objects have methods
- special functions that apply straight to the data in that object. PyVCF is no exception. As
well as methods, objects can have properties called attributes.

6.2.4 Object Attributes

As well as methods, objects have things called attributes.

Attributes of an object are different from methods of an object in that they tend to be things
that just are rather than things that are computed. So a hypothetical shape object representing
a geometric shape might have an attribute called sides. This wouldn’t need recomputing as
it would be the same every time.

Attributes are easy to spot as they use the object dot . syntax, omitting the brackets at the
end of the attribute name. Let’s examine that using the .POS attribute.

vcf_reader = vcfpy.Reader(open('/Users/macleand/Desktop/example.vcf', 'r'))

for record in vcf_reader:
print(record.POS)

14370
17330
1110696
1230237
1234567

Here we can see that we get the position of each SNP/Indel in the chromosome from .POS.
Note that we had to redo the vcf_reader creation - this is because the vcf.Reader object has
in a sense “got to the end” of the data the first time we used it. It needs re-winding to the
start and one way to do that is to recreate it and thereby reset it.

6.2.4.1 Finding the methods and attributes an object has

If we want to find out what methods or attributes an object has we can use the dir() function
which gives us these for an object.

print(dir(vcf_reader))

43

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__enter__', '__eq__', '__exit__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__next__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'close', 'fetch', 'from_path', 'from_stream', 'header', 'parsed_samples', 'parser', 'path', 'record_checks', 'stream', 'tabix_file', 'tabix_iter', 'tabix_path']

So the list is really large! Some methods and attributes begin with _ underscore characters.
By convention these are things that are used internally by the object - so you don’t need to
worry about those. We can filter the ones we can use, by building a list of ones that don’t
start with ’_’

attrs = dir(vcf_reader)
keepers = []
for a in attrs:
if not a.startswith("_"):

keepers.append(a)
print(keepers)

['close', 'fetch', 'from_path', 'from_stream', 'header', 'parsed_samples', 'parser', 'path', 'record_checks', 'stream', 'tabix_file', 'tabix_iter', 'tabix_path']

This is a much shorter list. You can see the online documentation for the object here
https://vcfpy.readthedocs.io/en/stable/api_io.html#vcfpy-reader

Pretty much all objects and packages will have some online documentation so you can usually
find something. Sometimes it’s a bit sparse, unfortunately.

6.3 Quiz

1. Using PyVCF, calculate how many of the records are SNPs and how many are Indels. Use
the documentation to see how you might achieve this - https://vcfpy.readthedocs.io/en/stable/api_record.html#vcfpy-
record

2. For each SNP, work out whether it’s an A-G or C-T, a so-called transition. Would your
method be efficient on a file of thousands of SNPS?

3. Which record has the greatest number of alleles? Would your method be efficient on a
file of thousands of SNPs/Indels?

4. How many alternative alleles are heterozygous, for each record?

44

7 Putting code into scripts

1. Questions:

• How do I write my code into a script that can be run again?

2. Objectives:

• Learn the conventions for creating script files.
• Get parameters from the command line and use them in scripts.

3. Keypoints:

• Scripts are files that contain programs of Python code.

Scripts are files full of code that has been put together in order to do a particular task. The
idea being that the code will get re-run many times and not just as a one off.

Building a script is usually pretty easy - just type the code in to a text file.

You’ll need a text editor, a program that deals with text but not in the same way as a word
processor. Many such programs are available, try the options below

1. Atom (macOS/Windows) https://atom.io/
2. Notepad++ (Windows) https://notepad-plus-plus.org/

7.1 The script header

Most Python scripts have this on the first line

#!/usr/bin/env python

This is a Unix/Linux convention that affects how those systems interpret the file. Leave it in
for convention’s sake.

45

7.2 The filename extension

By convention, Python script filess end in the extension, .py.

So if we have the following in a file called hello_world.py, we have a Python script.

#!/usr/bin/env python

print("Hello, World!")

7.3 Running a python script from the command line

Once created, the script itself is run from the python command on the command line. python
is just a regular program that accepts a python script filename as its argument and runs the
code in the script.

Here’s an example terminal session that runs a script.

Last login: Thu Dec 6 10:59:32 on ttys000
~/Desktop macleand$ python hello_world.py

Hello, World!

~/Desktop macleand$

7.4 Getting Options from the Command Line

A good reason for creating scripts is because you want to be able to re-run the code in them.
Sometimes you’ll want to change some aspect or behaviour of the code according to settings
given on the command-line. For example, you might want to work on a different input file
each time. We can access the text from the command-line in the script, using the sys.argv
attribute in the sys module.

Imagine the command line

python my_script.py OPTION_1 option_2

We access it like this

46

#!/usr/bin/env python

import sys

print(sys.argv)

['/Users/macleand/Desktop/programming_with_python/renv/python/virtualenvs/renv-python-3.8/lib/python3.8/site-packages/ipykernel_launcher.py', '-f', '/private/var/folders/22/kjdvv_k14cj1m6hq5hl527qw0006zc/T/tmprw33n0iy.json', '--HistoryManager.hist_file=:memory:']

['my_script.py', 'OPTION_1', 'option_2']

The sys.argv attribute gives us a list of the command line options. The first item in the list
is the script name, the options come after that. So we can access the options by indexing the
sys.argv list

python my_script.py OPTION_1 option_2

#!/usr/bin/env python

import sys

first_option = sys.argv[1]
second_option = sys.argv[2]

print(second_option, first_option)

/private/var/folders/22/kjdvv_k14cj1m6hq5hl527qw0006zc/T/tmprw33n0iy.json -f

option_2 OPTION_1

7.5 Quiz

1. Create a script that writes ‘Hello, World!’ to the screen. Run it.
2. Create a script that takes one argument and prints that to the screen as You said..

<argument> - replacing <argument> with the value you give on the command line.
3. Create a script that takes two numbers from the command line and adds them together

and prints the result.

47

8 Putting It All Together

8.1 A Challenge in Python

This file SRR020192.fastq.gz contains next generation sequencing reads in fastq format.

Write a Python script that uses the BioPython package to

1. Count the reads in the fastq file
2. Filter out low-quality reads from the fastq file
3. Calculate how many reads are retained
4. Use at least one user-defined function

48

assets/SRR020192.fastq.gz

A Installing what you need

A.1 Prerequisites

No specific Python knowledge is assumed for this book, though you do need to install some
software. Most of it can be done using your computer’s graphical interface.

1. Python 3 via Anaconda
2. A reasonably recent web-browser
3. The vcfpy and biopython python packages
4. The files example.vcf and SRR020192.fastq.gz
5. A text-editor

A.2 Installing Python 3 with Anaconda

Follow this link and install Python 3.x for your operating system. https://www.anaconda.
com/distribution/

A.2.1 Note for macOS users

Accept all of the defaults during installation

Here is a video tutorial https://www.youtube.com/watch?v=TcSAln46u9U

A.2.2 Note for Windows users

Install Python 3 using all of the defaults for installation except make sure to check Add
Anaconda to my PATH environment variable.

Here is a video tutorial https://www.youtube.com/watch?v=xxQ0mzZ8UvA

49

assets/example.vcf
assets/SRR020192.fastq.gz
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.youtube.com/watch?v=TcSAln46u9U
https://www.youtube.com/watch?v=xxQ0mzZ8UvA

A.2.3 Note for Linux Users

You’ll need to be able to use the command-line to install with Anaconda. If you aren’t
comfortable with this, ask for assistance from the local support team.

1. Open https://www.anaconda.com/download/#linux with your web browser.
2. Download the Python 3 installer for Linux.
3. Open a terminal window. 4.Type bash Anaconda3-and then press Tab. The name of

the file you just downloaded should appear. If it does not, navigate to the folder where
you downloaded the file, for example with: cd Downloads. Then, try again.

4. Press enter. You will follow the text-only prompts. To move through the text, press
the spacebar.

5. Type yes and press enter to approve the license.
6. Press enter to approve the default location for the files.
7. Type yes and press enter to prepend Anaconda to your PATH (this makes the Anaconda

distribution the default Python).
8. Close the terminal window.

A.3 Starting a Jupyter Notebook

A.3.1 macOS

1. Start the Terminal application in Applications -> Utilities
2. Type jupyter notebook, it should start in your web browser

A.3.2 Windows

1. From the Start menu, search for and open Anaconda 3 or Jupyter Notebook. You
should be able to start a notebook directly by clicking the Jupyter Notebook icon.

A.3.3 Linux

1. Open the terminal application. It is usually in the task bar or dock
2. Type jupyter notebook, it should start in your web browser

50

A.4 Installing Python Packages with conda

You can use conda to install new Python packages using the Terminal by typing conda
install <package_name>.

You can install the required packages with the following commands:

conda install vcfpy
conda install biopython

Accept all defaults when the system asks a question.

A.5 Installing a Text Editor

A text editor is a program that deals with text in a way that is appropriate to writing programs.
It is quite different to a word processor. Many such programs are available, try the options
below:

1. TextMate (macOS) https://macromates.com/
2. Atom (macOS/Windows) https://atom.io/
3. Notepad++ (Windows) https://notepad-plus-plus.org/

51

https://macromates.com/
https://atom.io/
https://notepad-plus-plus.org/

B Acknowledgements

Some of the quizzes and examples in this book particularly those in Chapters 3 to 7 are taken
from the Software Carpentry lesson on Programming in Python http://swcarpentry.github.io/python-
novice-inflammation/. Other examples in Chapter 9 and 10 are taken from the Biopython
tutorial http://biopython.org/DIST/docs/tutorial/Tutorial.html and the vcfpy tutorial
https://vcfpy.readthedocs.io/.These are re-used under their respective licences.

The rest of the materials are licensed under Creative Commons 0.

52

	Motivation
	Working with Data
	Using variables as names for data
	Python has three main types of function
	Built-In Functions and Operators
	Functions from packages
	Object Methods

	Objects and types in Python
	String Objects
	Number Objects

	Quiz

	Data Structures
	Lists are ordered linear collections of items
	List use
	List methods

	Dictionaries are unordered collections
	Dictionary Methods

	Quiz

	Making Choices and Controlling Program Flow
	Conditionals check values and adjust which code is run
	Indentation in Python is Pretty Important
	More ifs
	Testing equality

	Logical operators in tests
	What is True and what is False

	That's not not what I meant
	Quiz

	Repeating actions with Loops
	For Loops
	Choosing loop variable names
	Loop variable lifespan
	Looping over a list
	Looping over a range of numbers
	Looping over a dictionary

	While Loops
	Quiz

	User Functions
	Building your own function
	Composing functions
	Variables inside and outside Functions
	Designing programs to use functions
	Quiz

	Working with Python Packages
	Using and Installing Packages.
	The vcfpy Package
	VCF files - a brief introduction
	The vcf.Reader object
	The vcf.Record object
	Object Attributes

	Quiz

	Putting code into scripts
	The script header
	The filename extension
	Running a python script from the command line
	Getting Options from the Command Line
	Quiz

	Putting It All Together
	A Challenge in Python

	Appendices
	Installing what you need
	Prerequisites
	Installing Python 3 with Anaconda
	Note for macOS users
	Note for Windows users
	Note for Linux Users

	Starting a Jupyter Notebook
	macOS
	Windows
	Linux

	Installing Python Packages with conda
	Installing a Text Editor

	Acknowledgements

