
Literate Computing

Dan MacLean

May 2022

Table of contents

Motivation 4
If we didn’t have to do it over and over, it wouldn’t be called re-search. 4

1 R and RMarkdown 7
1.1 About this chapter . 7
1.2 Markdown . 7

1.2.1 Basic markdown tags . 8
1.3 R Markdown . 8

1.3.1 Using R Markdown in RStudio . 9
1.3.2 Conclusion . 12

2 Python and Jupyter Notebooks 13
2.1 About this chapter . 13
2.2 Jupyter Notebooks . 13
2.3 Trying Out Jupyter on The Web . 13
2.4 Starting Jupyter . 14

2.4.1 macOS and Linux . 14
2.4.2 Windows . 14

Appendices 14

Prerequisites 15
Knowledge prerequisites . 15
Software prerequisites . 15

Installing R . 15
Installing RStudio . 15
Installing R packages in RStudio . 16

Standard packages . 16
Installing Python 3 with Anaconda . 16

Note for macOS users . 16
Note for Windows users . 16
Note for Linux Users . 16

Starting a Jupyter Notebook . 17
macOS . 17

2

Windows . 17
Linux . 17

Installing Python Packages with conda . 17

3

Motivation

If we didn’t have to do it over and over, it wouldn’t be called
re-search.

Developing a data analysis is hard, it can involve many mis-steps and changes of mind from
redoing of little bits here and there that weren’t quite right the first time, to introducing new
ideas or removing whole sections that didn’t work out. This iterative process is completely
in-line with all other aspects of research and means that we have a personal need to be able
to record exactly what we’ve done with high accuracy, and high reproducibility. It is also our
scientific responsibility and an aspect of scientific integrity that we are clear and open about
the methods we use as they are key in the interpretations and understanding of the results
that we get. In the jargon of the field we think of this as ‘keeping a proper lab book’, but
when it comes to using a computer, what we need to record, when is not often clear nor is it
sometimes easy to do so. As a result the methods sections of many reports, theses and papers
report scientific computing in a vague and uninterpretable way, making statements like ‘tests
were done in Excel’ or ‘GenStat was used to perform 𝑡-tests’, or ‘a custom R script was used’.
These nebulous reports are useless for anyone trying to understand exactly what was done and
reports using them are unreproducible. That they pass reviewers so often is a clear indication
of the failure of reviewing of methods. In practice these sorts of write ups are no better and no
more informative than announcing that statistical analyses were done with a magic spell.

A major failing of computer graphical interfaces is that they do not make it easy for us to
repeat actions, which is ironic as computers are excellent at repeating instructions very quickly.
Scripts and programs are required to get the best reproducibility out of our computers, but
scripts in R and Python (and any other computer language) are not easily read by people,
even those with a great deal of experience in programming. Very quickly reproducible scripts
become unusable lumps of code because users can’t tell what is in them and what they are
supposed to do, a phenomenon that has it’s own acronym - WORN - write once, read never.

Literate programming is the skill of writing code that is readable and understandable, often
without the need to read the actual code in any depth. This is a very useful day-to-day skill
to have when working in science as multidisciplinary teams abound. It is also useful when
switching from project to project as we can understand what we were doing in a new project
and get going again quickly. Using literate programming also eases our duty to report clearly
and openly what we did in our analysis as the task of writing the code and explaining what
we did are accomplished simultaneously.

4

Figure 1: Artwork by @AllisonHorst

5

https://github.com/allisonhorst

In this course we’ll learn how to create a literate programming document in two popular data
science languages, R and Python. The two systems share a common core and much of what
you learn for one will be applicable to the other.

6

1 R and RMarkdown

1.1 About this chapter

1. Questions:

• How do I write a reproducible analysis document in R with RStudio?

2. Objectives:

• Learn markdown basics
• Mix markdown and R with Rmarkdown

3. Keypoints:

• RMarkdown documents are excellent tools for creating readable, attractive and dynamic
reproducible literate programming documents.

1.2 Markdown

The process of adding annotations, like corrections or notes and comments to a physical
or digital document is sometimes called ’marking it up. In processing digital documents, a
language that adds tags to text to format them is called a markup language. Web pages are
all written in a markup language called HTML (hypertext markup language) and it puts tags
around elements to format them. Here for example is the markup for making text bold.

I am regular text. But I am bold!

and when you put that test through a rendering program like a web browser, it shows up like
this:

I am regular text. But I am bold!

As you can see the bits in the are formatted as per the tags surrounding them
(the <\b> tags mean bold). Markdown performs a similar job, it is a lightweight markup
language (hence mark-down), that can do a lot of formatting, and unlike HTML still looks
readable in raw text without rendering it. It is a simple base format and can easily be converted
into many formats.

7

1.2.1 Basic markdown tags

Here is a selection of basic markdown tags.

This is a heading

Here is some regular text, this is **bold**.

This is a different, lower level heading (Note the number of `#`)

1. I am a member in a list
2. I am another member in the list

Here is an image tag

![A Random Image](https://picsum.photos/200/300)

When rendered, this is going to look like this

More markdown tags are available, hopefully these give you an idea of how markdown works.
Here is a helpful ‘cheat-sheet’ with many more tags you can use, RStudio RMarkdown Cheat
Sheet.

1.3 R Markdown

R Markdown is an extension of markdown with R mixed in. The markdown syntax is extended
using special blocks that contain R code. When it comes to rendering time, the R is run and

8

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf

the results pushed into the rendered document. By mixing these together we get a tool which
we can use to get a literate programmed document that can fulfil all our responsibilities.

The R code block we mix in with our regular markdown is structured with ``` (backticks, not
quotes) and {r}, in practice a block looks like this

```{r}

print("Hello, World!")

```

Any R code can go in the blocks, and the program remembers state between blocks so that
stuff you do in earlier blocks is remembered in later ones.

1.3.1 Using R Markdown in RStudio

RStudio provides a lot of tools for creating RMarkdown documents easily. To get a basic
template document you can use the menu’s File -> New File -> R Markdown. On doing
this you see a dialogue box, usually you want to set the options as in the figure below (you
can put your name and a title in the relevant boxes)

When you do this you get a new draft document.

For you to do

Using RStudio, create a new RMarkdown document. Read it and compare it with what
goes below.

9

Figure 1.1: Artwork by @AllisonHorst

10

https://github.com/allisonhorst

1.3.1.1 Header Information

The first bit of the draft document is a bit of YAML markup that captures some information
about the document. You don’t need to change anything here if you don’t want to, though
it can be useful to use the information at this link to set the date automatically Dates in
RMarkdown

title: "My Document"
author: "Dan MacLean"
date: "20/04/2021"
output: html_document

1.3.1.2 Setup Block

The next part is the automatically created set up block

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = TRUE)

```

This is a standard R block with some options set. The first bit ‘```{r setup,} is the standard
block start, but this one is named setup. You don’t need to name each block, but it can be
helpful when bugs start to appear. The next bit include=FALSE is an option that tells the
RMarkdown renderer not to include the code or it’s output in the final document, this is
because this is just setup code that we don’t want messing up our nice output. Then we have
the code that this block runs knitr::opts_chunk$set(echo = TRUE) which set up some
formatting options. You can use this block for any bits of setup code that you don’t want in
the rest of your document.

1.3.1.3 Markdown and R blocks

The other blocks are the document’s standard code and text blocks. Read them then perform
this task

For you to do

Using RStudio, render the document using the Knit button at the top of the editor pane.
Note how the code and results, including plots are mixed in the resulting document.
Make some text edits and change the plot titles, then re-knit the document.

11

https://bookdown.org/yihui/rmarkdown-cookbook/update-date.html
https://bookdown.org/yihui/rmarkdown-cookbook/update-date.html

1.3.2 Conclusion

This all there really is to RMarkdown documents, they are a very easy to use tool for keeping
your analyses readable and reproducible. Inspect the cheat sheet a little further for tips on
what more you can do in RMarkdown, RStudio RMarkdown Cheat Sheet.

Roundup

RMarkdown documents are excellent tools for creating readable, attractive and dynamic
reproducible literate programming documents.

12

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf

2 Python and Jupyter Notebooks

2.1 About this chapter

1. Questions

• How do I write a reproducible analysis document in Python with Jupyter??

2. Objectives

• Mix markdown and Python with Rmarkdown
• Run an interactive analysis document

3. Keypoints

• Jupyter notebooks are excellent tools for creating readable, attractive and dynamic
reproducible literate programming documents.

2.2 Jupyter Notebooks

A Jupyter Notebook is really quite similar to an RMarkdown document in that it mixes code
and markdown in different blocks and allows the user to create a reproducible document.
Jupyter varies from RMarkdown slightly in that it prioritises interactive work, instead of
rendering a whole document, each block is run individually. Making the whold process a bit
more step-by-step than in R Markdown.

2.3 Trying Out Jupyter on The Web

Because Jupyter notebooks are a bit fiddly to get started, there is an online test notebook set
up by the Jupyter authors - Classic Jupyter Notebook. It can be a bit busy so may take a few
reloads to get started.

13

https://jupyter.org/try

For you to do

* Go to the link above and start a classic Jupyter notebook.
* Work through the `Notebook Basics` section.
* Start a new workbook and play around mixing Python Code and Markdown.
* Save as an html file when you are done

2.4 Starting Jupyter

2.4.1 macOS and Linux

To get Jupyter running on your machine, you need to have Python 3, and the jupyter and
ipython packages installed. That is all listed in the set up of this course.

Once those are installed you can start a new notebook server by typing jupyter notebook
at the terminal. Depending on the particulars of your local set up you may need to select an
appropriate conda environment beforehand. A new server should start showing the filesystem
in your web browser, use the buttons in the web page to start a new notebook.

2.4.2 Windows

There should be a Start Menu item that will let you kick off a new Jupyter notebook server.
Simply click on that.

For you to do

* Start a new workbook and play around mixing Python Code and Markdown.
* Pay attention to the block type options dropdown in the interface (under the `Widgets` menu), here is where you can tell the document whether you are writing some Markdown or entering Python. Use the `Run` button to run the code/render the Markdown.
* Save as an html file when you are done

Roundup

Jupyter Notebooks are excellent tools for creating readable, attractive and dynamic re-
producible literate programming documents.

14

Prerequisites

Knowledge prerequisites

The materials in this book assume that you already know something (but not necessarily a
great deal) of the languages R and Python, so there won’t be any introduction to the languages
themselves. The rest of this chapter will help you set up the software you need to practice
with those tools.

Software prerequisites

You need to install the following stuff for this book:

1. R
2. RStudio
3. Some R packages: rmarkdown, knitr
4. Python 3 via Anaconda
5. A reasonably recent web-browser

Installing R

Follow this link and install the right version for your operating system https://www.stats.bris.
ac.uk/R/

Installing RStudio

Follow this link and install the right version for your operating system https://www.rstudio.
com/products/rstudio/download/

15

https://www.stats.bris.ac.uk/R/
https://www.stats.bris.ac.uk/R/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

Installing R packages in RStudio

Standard packages

In the RStudio console, type

install.packages(c("rmarkdown", "knitr"))

Installing Python 3 with Anaconda

Follow this link and install Python 3.x for your operating system. https://www.anaconda.
com/distribution/

Note for macOS users

Accept all of the defaults during installation

Here is a video tutorial https://www.youtube.com/watch?v=TcSAln46u9U

Note for Windows users

Install Python 3 using all of the defaults for installation except make sure to check Add
Anaconda to my PATH environment variable.

Here is a video tutorial https://www.youtube.com/watch?v=xxQ0mzZ8UvA

Note for Linux Users

You’ll need to be able to use the command-line to install with Anaconda. If you aren’t
comfortable with this, ask for assistance from the local support team.

1. Open https://www.anaconda.com/download/#linux with your web browser.
2. Download the Python 3 installer for Linux.
3. Open a terminal window. 4.Type bash Anaconda3-and then press Tab. The name of

the file you just downloaded should appear. If it does not, navigate to the folder where
you downloaded the file, for example with: cd Downloads. Then, try again.

4. Press enter. You will follow the text-only prompts. To move through the text, press
the spacebar.

5. Type yes and press enter to approve the license.
6. Press enter to approve the default location for the files.

16

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.youtube.com/watch?v=TcSAln46u9U
https://www.youtube.com/watch?v=xxQ0mzZ8UvA

7. Type yes and press enter to prepend Anaconda to your PATH (this makes the Anaconda
distribution the default Python).

8. Close the terminal window.

Starting a Jupyter Notebook

macOS

1. Start the Terminal application in Applications -> Utilities
2. Type jupyter notebook, it should start in your web browser

Windows

1. From the Start menu, search for and open Anaconda 3 or Jupyter Notebook. You
should be able to start a notebook directly by clicking the Jupyter Notebook icon.

Linux

1. Open the terminal application. It is usually in the task bar or dock
2. Type jupyter notebook, it should start in your web browser

Installing Python Packages with conda

You can use conda to install new Python packages using the Terminal by typing conda
install <package_name>.

You can install the required packages with the following commands:

conda install jupyter

Accept all defaults when the system asks a question.

17

	Motivation
	If we didn't have to do it over and over, it wouldn't be called re-search.

	R and RMarkdown
	About this chapter
	Markdown
	Basic markdown tags

	R Markdown
	Using R Markdown in RStudio
	Conclusion

	Python and Jupyter Notebooks
	About this chapter
	Jupyter Notebooks
	Trying Out Jupyter on The Web
	Starting Jupyter
	macOS and Linux
	Windows

	Appendices
	Prerequisites
	Knowledge prerequisites
	Software prerequisites
	Installing R
	Installing RStudio
	Installing R packages in RStudio
	Standard packages

	Installing Python 3 with Anaconda
	Note for macOS users
	Note for Windows users
	Note for Linux Users

	Starting a Jupyter Notebook
	macOS
	Windows
	Linux

	Installing Python Packages with conda

