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Motivation

Mr. Micawber’s rule of scientific success

We really do need to move away from p-values as a gold-standard of truth in experimental
science. The ruinous role of the p-value in modern science can not be overstated. This one
value is responsible for happiness and despair in equal measure. They say money is the root of
all unhappiness and Dicken’s Mr. Micawber had this to say about the role of money in life:

‘Annual income 20 pounds, annual expenditure 19 [pounds] 19 shillings and six
pence, result happiness. Annual income 20 pounds, annual expenditure 20 pounds
ought and six, result misery.

in science a corollary exists:

‘p below 0.05, result success, papers, grants, and tenure. p above 0.05 result failure,
misery, ignominy, and rejection.’

The truth is that p < 0.05 is an entirely arbitrary cut-off and is not in itself a helpful or
meaningful value. Various scientific communities, led by publishing requirements, have ac-
cepted p < 0.05 as a gold standard of truth against sense and often against rigorousness. With
Bayesian tests we will be able to completely do away with p-values and confidence intervals
and in their place use a more evidence based approach to making inferences.

Learning to select hypotheses using Bayesian approaches

The sort of statistics that most experimental science students are taught are called ‘Frequentist
Statistics’ They include the t-tests, ANOVA and y>-tests and the linear models that we have
studied already.

The inferential approach (how we make decisions about data) in the Frequentist paradigm
is often criticised for being weak and is often abused. Although the abuse is as much a
consequence of convention in the scientific literature and in scientific publishing, the misin-
terpretation of p-values by generations of scientists as it is the philosophical weakness of the
methods themselves, the weaknesses persist and over time other paradigms have emerged.



We have seen an alternative in Estimation Statistics, in this course we will look at another -
Bayesian Inference. We will use Bayes Factors to compare levels of evidence for one hypothesis
over another, rather than just accepting or rejecting a simplistic null hypothesis.

The advantage of this will be that we can much more directly select between specific hypotheses
that might describe our data. This will give us a much clearer idea about a question that we
instinctively want to answer when we do statistics - ‘Which hypothesis is most likely true?’,
we will see that we can formulate this in lots of ways, but in general the hypotheses we want
to compare will be something along the lines of some measured quantity being different in
different samples. With Frequentist Inference we can only ask the roundabout question, ‘How
often does the difference we observe occur by chance?’ and if it isn’t likely, say so. With Bayes
Factors we will be able to compare directly competing hypotheses and reject the least likely
absolutely.
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1 Bayesian Inference

1.1 About this chapter

1. Questions

o What is probability?
e What does Bayes Theorem do?
e How can we compare hypotheses about data?

2. Objectives

e Understand the differences between Frequentist and Bayesian probability
e Get an appreciation of Bayes Theorem
¢ Understand what a Bayes Factor represents

3. Keypoints

e Probability can be based on frequency of events or the level of knowledge we have
about a thing

o Bayes Theorem gives a likelihood based on evidences that can change

o Bayes Factors are useful in comparing hypothesis about the same evidence

1.2 Frequentist and Bayesian Interpretations of Probability

It may seem like a strange question to ask, but what, exactly, is probability? Whatever it is
it certainly isn’t a solid thing that we could carry in a bucket. Probability is a strange and
often ill-defined concept that can get very confusing when one starts to think deeply about it.
When asked what probability is people will generally start to talk about vague concepts like
chance or likelihood or randomness or fate, even. Most people will give examples of coins being
thrown or dice being rolled. This ephemerality is no good when we want to use probability
so when it comes to working with probability statisticians needed to develop very precise
definitions. It turns out that different ways of thinking about likelihoods can result in very
different definitions of probability.

The two definitions that we will consider are those called the Frequentist and the Bayesian
definitions



1.2.1 Frequentist Probability

The Frequentist definition of probability is based on the frequency of occurrence of events. This
is a definition that is most similar to the coin toss or dice throw intuition about probability.
A probability can be stated thus

__ number of ways event can happen
P(Event) " number of all possible outcomes

So in a coin toss, we might get the following probability of getting ‘heads’

__ number of heads on the coin
P(head8> ~ number of sides to the coin

which of course, computes as
P(heads) =

Thinking of probabilities in this way is similar to a gambler who plays games of chance like
roulette or craps, where the odds of winning are entirely based on the outcome of simple
random process.

This is so simple and intuitive that we might be tempted to think it’s the natural way to think
about probabilities, but there are other definitions.

1.2.2 Bayesian Probablity

The Bayesian definition of probability is different, it takes probability to be a reasonable expec-
tation of an event, depending on the knowledge that the observer has. You might understand
these probabilities similarly to a gambler that bets on horse races and changes their assess-
ment of a horse’s winning ability based on the conditions of the ground and the weight of the
jockey. These are trickier to understand than the Frequentist definition but an example can
be helpful.

Consider that you and a friend are playing cards and that your friend claims to be able to
guess the identity of a card that you draw and replace. A frequentist probability would say
that the probability of this was P(correct) = 5% However, you know that your friend is
an amateur magician, so you expect that the probability of a correct guess would be much
higher than that. That is to say that you have a different reasonable expectation because you
have incorporated prior knowledge into your working. Bayesian Probability is based on this
prior knowledge and updating of belief based on that knowledge to come up with a posterior

likelihood of an event.

In rough terms the answer - a ‘posterior probability’ is arrived at by combining a ‘prior
probability’ and ‘evidence’. In the card guess example the ‘prior probability’ was the raw
chance based probability that anyone would guess the card 5%, the ‘evidence’ was the fact that
your friend was an amateur magician and the ‘posterior probability’ was the updated ‘prior

probability’ that the chance of guessing was higher than 5%



One problem we might spot is how exactly do we update our probability to actually get a
measure of the posterior? A formula known as Bayes Theorem lets us do the calculation, but
it can be very hard to get the actual numbers we need for evidence and this can be a barrier
to using Bayes in the real world. However, let’s look work one calculation through with some
assumed numbers to get a feel.

1.3 Bayes Theorem by Rough Example

The mathematical basis of calculating a posterior belief or likelihood is done with a formula
called Bayes Theorem. Which, using our card example defines the posterior as

P(correctlmagician)

which reads as the probability of a guess being correct once you know you are working with a
magician.

It defines the prior as

P(correct)

which reads as the probability of being correct in a random guess (which we know to be é)
And it defines the evidence as

P(magician|correct)

which reads as the probability of the person being a magician given a guess was correct. This
is the number which can be hardest to work out in general though in this case we might say
it is quite high, say 0.9.

Bayes Theorem then works out the posterior probability given these numbers. There is a very
famous formula for this, that I won’t include here for simplicity sake, but it is very interesting.
We can take a short cut and use R to work out the posterior from the prior and the evidence
as follows

library(LaplacesDemon)
prior <- c(51/52,1/52)
evidence <- c(0.9, 0.1)

BayesTheorem(prior, evidence)

[1] 0.997826087 0.002173913
attr(,"class")
[1] "bayestheorem"



as it is the first reported number we want, we can see that we get a 99% posterior probability
that the guess will be correct if we know that the 90% of correct guesser’s are magicians.

The key thing to take away here is that the Bayesian Probability allows us to modify our view
based on changes in the evidence. This is a key attribute as we can use it to compare the
resulting posteriors from different evidences. In other words it allows us to compare different
hypotheses based on different evidence to see which is the more likely.

1.4 Hypotheses in Frequentist and Bayesian Statistics

Now that we know Bayes Statistics allow for updating our beliefs in the light of different
evidence we can look at how we can formulate hypotheses to take advantage of this and do
something very different with Bayes than we do with Frequentist ideas.

Let’ recap the logic of hypothesis tests in Frequentist statistics.

1.4.1 Frequentist Hypotheses

You may recall that the first step of doing a hypothesis test like a t-test is to set up our
hypotheses. The first H, is the null hypothesis which represents the situation where there is
no difference and H; is the alternative. Next we select a Null model that represents the Null
hypothesis, this step is usually implicit at the operator level and comes as part of the linear
model or t-test that we choose to use, and usually is based on the Normal Distribution. Our
hypothesis represent the situation as follows

o H,:2,— 2y =0 IE, the sample means are equal.
e H,:Zy— x4y +# 0 IE, the sample means are not equal.

We test H, (the Null Hypothesis and Model) to see how likely the observed result is under
that and if it is unlikely at some level (p) then we reject H, and accept H;.

We criticised this for being weak inference in the Linear Model course. Let’s do that again.
In this framework haven’t we accepted H; without analysing it? Here it means that we have
had to set up hypotheses that are binary and not compare them directly. We have a take or
leave approach to hypotheses.

We haven’t, for example been able to ask whether z; > z, because that wouldn’t be askable
under our single test, binary paradigm. That’s a limitation. As scientists we should be able
to collect data and compare models or hypotheses about that data directly.
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1.4.2 Bayesian Hypotheses

In the Bayesian Framework we can formulate hypotheses as we wish and compare them directly,
using Bayesian probabilities to examine models with different evidences and priors. So if the
evidence shows that H, isn’t any more believable than H; we wouldn’t falsely fall into the
trap of believing H,; was somehow more correct.

Bayesian Hypotheses can be a bit more like this

e Hy:z; <y IE sample 1 has a lower mean than sample 2
e H,:x; >z, IE sample 1 has a higher mean than sample 2.

which is often much more intellectually satisfying and can lead to clearer answers than the
more binary Frequentist hypotheses.

A significant limitation of the approach is the need to select and quantify the prior and the
evidence, which can be crucial and lead to very different outcomes if different values are
chosen.

Selection of the prior knowledge itself is very difficult and no suitable data may exist. Getting
the right data is subjective in many cases and there is no one right way. Domain knowledge is
important and often crucial but this can easily lead to bias. An unwitting, uncareful (or say
it quietly - unscrupulous) operator could select a prior that would bias the result in favour of
a preferred hypothesis. This is a form of confirmation bias or interpretation of the data in a
way that confirms your prior beliefs.

For these reasons Frequentist approaches are often the most pragmatic and a priori transparent
method, though if the priors and evidence can be collected in a non-biased way Bayesian
approaches offer us excellent alternatives.

1.5 Bayes Factors

We can use Bayesian Inference through a tool known as Bayes Factors. Bayes Factors are a
method of directly comparing the posteriors of different models with different evidences and
priors.

Bayes Factors make a ratio of the result of one model or hypothesis over another, resulting
in a single quantity that we can examine. Consider that our hypotheses above have been put
through the process and a result gained thus

o Hy:2y <xy~ Posterior =0.2
e H,:x; > x5~ Posterior = 0.6

11



We can clearly see that H; has 3 times more support than H; and we would want to accept
that as a better explanation of our data.

Bayes Factors are just that, the ratio of the relative goodness of the hypotheses. From this we
can make statements about the support for hypotheses. Wagenmakers et al. (2011) created a
table of thresholds indicating interpretations for different Bayes Factors on two hypotheses.

Bayes.Factor

Interpretation

>100
30..100
10..30
3..10

1.3

1

1.1/3
1/3..1/10
1/10..1/30
1/30..1/100
<1/100

Extreme evidence for H,, compared to H;
Very Strong evidence for H, compared to H;
Strong evidence for H, compared to H,;
Substantial evidence for H,, compared to H,;
Anecdotal evidence for H,, compared to H,;
No evidence

Anecdotal evidence for H; compared to H,
Substantial evidence for H; compared to H,
Strong evidence for H,; compared to H,
Very Strong evidence for H; compared to H,,
Extreme evidence for H,; compared to H,,

These are extremely useful especially when used with other measures and interpretations like
estimation statistics to allow us to make statistical claims.

In the next chapters we will look at how to use Bayes Factors in place of common frequentist

hypothesis tests.

1 Note

The Wagenmakers et al. (2011) article is fun if you can get hold of it. It’s a commentary
on an earlier article in which the researchers conclude that people have the ability to
see into the future! Which they arrive at by misapplying statistics the same way that
researchers across all fields do. Wagenmakers et al reperform the analysis with Bayes
Factors and show that the original conclusions are unsound.

1.6 References

12
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2 Bayes Factor t-tests

2.1 About this chapter

1. Questions

e How can I do compare two continuous samples with Bayes Factors?
e How can I specify a directional hypothesis?
e How much difference does the prior make?

2. Objectives

¢ Understand how a Bayes Factor t-test can be done in R
e Consider how p and the Bayes Factor are not contradictory
e Understand that hypothesis and prior selection is important

3. Keypoints

e The BayesFactor package provides functions for Bayes Factor analysis
o Bayes Factors and p-values ask very different questions
¢ One-tailed tests are possible and may be better options

In this section we’ll look at how we can do a t-test-like two sample comparison with Bayes
Factors. The process is surprisingly straight forward but does need us to pay attention to the
weaknesses of the Bayes method - specifically choosing the prior probability distribution. To
actually do the tests we’ll use the ttestBF() in the BayesFactor package.

2.2 A Frequentist ¢-test

To begin we’ll first do a normal ¢t-test with a sample data set as a basis for later comparison

2.2.1 The Plant Growth data set

You may recall the Plant Growth data set we used in the Linear Models course, here’s a
reminder

14



weight group
Min. :3.590 ctrl:10

1st Qu.:4.550 trt1:10
Median :5.155 trt2:10
Mean :5.073
3rd Qu.:5.530
Max. :6.310
°
° °
6.0 ®
°
°
5.5 ° L °
° ..' group
) o0 Py °
5,50 _ o ctrl
g ¢ [ J e trtl
° ¢ ®  trt2
4.5 ® ° '
°
°
° °
4.0
°
°
3.5
ctrl trtl trt2
group

We will use this as an example data set, specifically we’ll use ctrl and trt2 data, which we
need to extract. Note the mean values for trt2 look larger than ctrl.

library(dplyr)

pg_small <- PlantGrowth %>7
filter(group %in’% c("trt2", "ctrl")) %>%
droplevels()

let’s calculate too the sample difference mean and the standardised effect size, as it will be
important to know these values later

library(tidyr)
pg_small %>
group_by(group) %>%
summarise(mean_weight = mean(weight)) %>%

15



pivot_wider( names_from = group, values_from
summarise(mean_sample_diff = “trt2° - “ctrl’)

# A tibble: 1 x 1
mean_sample_diff
<dbl>
1 0.494

So the mean of trt2 is bigger than ctrl by 0.49 g.

library(effectsize)
cohens_d(weight ~ group, data=pg_small)

Cohen's d | 95% CI

-0.95 | [-1.87, -0.01]

- Estimated using pooled SD.

And correspondingly the standardised effect size is large. The effect size is negative because
the calculation has been done in the order that the groups appear in the data. ctrl comes
first so the calculation was ctrl - trt2 which is a negative value. For now, this won’t matter.

We will need to pay attention to it later.

2.2.2 Two Sample t-test

Let’s now do the t-tests. The hypotheses for a test comparing the treatment groups are

mean_weight) %>/

o Hy: tr}Q — ct:rl = 0 IE the mean sample difference is 0
e H, :trt2 —ctrl # 0 IE the mean sample difference is not 0

Using these data to do a t-test is easy, we’ll specify a cut-off of 0.05 for rejection of H,,.

model <- lm(weight ~ group, data = pg_small)
summary (model)

16



Call:
Im(formula = weight ~ group, data = pg_small)

Residuals:
Min 1Q Median 3Q Max
-0.862 -0.410 -0.006 0.280 1.078

Coefficients:
Estimate Std. Error t value Pr(>lt])
(Intercept) 5.0320 0.1637 30.742 <2e-16 **x
grouptrt?2 0.4940 0.2315 2.134 0.0469 *
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5176 on 18 degrees of freedom
Multiple R-squared: 0.2019, Adjusted R-squared: 0.1576
F-statistic: 4.554 on 1 and 18 DF, p-value: 0.04685

We get a p-value of 0.046 which is less than our cut-off of 0.05 so we reject H, as unlikely and
accept H; without explicitly testing it. Our conclusion scientifically is that trt2 has greater
weight than ctrl.

2.3 A Bayesian t-test

Now let’s set up a BayesFactor t-test. First we must set our hypotheses. The null hypothesis is
similar to that in the frequentist ¢-test, the idea is that there is no effect which we formulated
above as

e Hy:trt2 —ctrl = 0 IE the mean sample difference is 0
Another way to say this is that the effect size d is 0 so
. HO : d == O

Because we need something to compare against we now need to form the alternative hypothesis.
By default the ttestBF() function tests the alternative hypothesis that the effect size is not
0

« H :d+#0

17



and returns the Bayes Factor we need. Performing the test is straightforward

library (BayesFactor)
ttestBF (formula = weight ~ group, data = pg_small)

Bayes factor analysis

[1] Alt., r=0.707 : 1.774688 =07

Against denominator:
Null, mul-mu2 = 0O

Bayes factor type: BFindepSample, JZS

We get a clear answer, the output on the line marked [1] is a Bayes Factor and states that the
data are 1.77 times more likely if H, were true than if H, were true. In other words the odds
of the data favouring the H, to H are 1.77:1. Which is the answer we wanted to get, we have
explicitly tested H, and H; and found that H; is more likely to fit the data.

2.4 Comparing p and the Bayes Factor for the PlantGrowth data

Comparing to our table of interpretation of Bayes Factors, we see that this corresponds only
to ‘Anecdotal Evidence’ in favour of H;, which sounds weak and like really there isn’t much
evidence for the idea that the two samples are different. Do we find this surprising given that
the p-value from the t-test was significant? Does this mean that the two methods disagree?
Strictly speaking, no, we shouldn’t be surprised and no they don’t disagree.

It’s a bit of an apples and oranges situation. The two values are answers to very different
questions.

As we’ve said before the frequentist p-value only measures the proportion of times a difference
of the measured size would occur under some presumed background model. It does not measure
the evidence that the hypothesis is true even though that is how many people try to interpret it.
p only tells us how often we would be wrong if we reject H,,. As a result, many philosophers
have stated that p based significance is a fundamentally uninteresting measure - who cares
how often a difference occurs in some ideal world - what is important is the relative fit of
the competing hypotheses to the data and that this measure of the strength of evidence per
hypothesis is more in line with the interests of researchers.

Taken together our p-value states that the difference between the means of trt2 and ctrl we
observed occurs by chance in a normal distribution less than 0.05% of the time and the Bayes
Factor tells us that the odds that the data favour the idea that trt2 is not the same as ctrl

18



are only 1.7 times greater than the idea that trt2 and ctrl are equal. We can see that the
two methods do not contradict.

Hopefully this brings home the idea that Bayes Factor is different and arguably closer to what
many scientists think they are doing when they do frequentist statistics.

Interpreting these results correctly, then, logically means that a researcher is not likely to be
very excited by the results and would not over value the significance of the observed differ-
ence.

2.5 Better Hypotheses - One-tailed tests

But looking at the hypotheses we generated, could we ask a better, more informative one?
With frequentist tests, no, but with Bayes Factors we can test different hypothesis. Instead of
asking whether trt2 is the same as ctrl or not we could ask something more specific. We are
likely interested in whether trt2 is greater than ctrl, or in other words that the effect size is
greater than 0

.H1:d>0

We can specify this H; by setting the nullInterval argument, this is just the range we expect
the effect sizes to be in under the null hypothesis, so we can use 0 to Infinity to cover any
increased effect size (and -Infinity to 0 for any decreased effect size.

2.5.1 A data frame based gotcha

Here is where we can run afoul of R’s idiosyncarcies - it is important to be careful here because
the order of the data in the dataframe can have an effect that can confuse us. Recall that our
effect size calculation for these data came out negative because ctrl came before trt2. Look
at the dataframe pg_small.

str(pg_small)

'data.frame': 20 obs. of 2 variables:
$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ group : Factor w/ 2 levels "ctrl","trt2": 1111111111

Note that the ctrl level in the group factor is first, we need to think of our H; more carefully,
o Hl : d > 0

really is in this case

19



o H, :trt2 —ctrl >0

so we need to make sure that trt2 comes first in the group factor. We can use the $ notation
to reorder the factor as we wish

pg_small$group <- factor(pg_small$group,
levels=c("trt2", "ctrl") )
str(pg_small)

'data.frame': 20 obs. of 2 variables:
$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ group : Factor w/ 2 levels "trt2","ctrl": 2222222222 ...

2.6 Performing the One-tailed test

With that done we can move back on with the one-sided test, specifying the interval as ex-
pected.

ttestBF (formula = weight ~ group, data = pg_small, nulllnterval=c(0, Inf))

Bayes factor analysis
[1] Alt., r=0.707 0<d<Inf : 3.387166 +0%
[2] Alt., r=0.707 !(0<d<Inf) : 0.1622109 x0%

Against denominator:
Null, mul-mu2 = 0O

Bayes factor type: BFindepSample, JZS

Performing the test was nice and easy and we get an answer. The first line of the output [1]
states the odds that the data favour the alternative hypothesis over the null are 3.38:1. The
Bayes Factor is increased over the earlier more vague hypothesis, suggesting there is actually
substantial evidence for the idea that the effect size is greater than 0.

20



2.7 Testing the effect of the prior

We discussed that one of the limitations of Bayesian Inference was the need to carefully and
justifiably select a prior and that doing so was difficult. We’ll look at that a little bit now
as we did make a decision on this albeit implicitly by allowing the defaults of the ttestBF ()
function.

In our ttestBF () function we actually need to provide a prior distribution for the maths to
work, not just a single value. We don’t want to get into details of those maths as they are out
of scope but we do need to know that the prior distribution needs to cover a range of effect
sizes that might be plausible if the null hypothesis were false.

The BayesFactor package provides a Cauchy distribution as default. Since the selection of
the prior implies that we know something about our dat, using the Cauchy implies that we
think the population is normally distributed (which is the same distribution we assume under
the standard frequentist statistical tests).

2.7.1 The Cauchy Prior Distribution

The Cauchy is a distribution with a single parameter called scale that affects how wide its
main humpy bit is. In BayesFactor there are three widths we can choose from depending on
how big a difference we think we are seeing, that is how big the effect size. When plotted,
these distributions look like this

0.4
0.3
name
> .
g — medium
S I
302 wide
ultrawide
0.1
0.0
-10 -5 0 5 10
effect_size
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and the name corresponds to scale values as follows

name scale
medium 0.71
wide 1.00

ultrawide 1.41

In each of the distributions 50% of the area under the curve falls within +/- the scale value.

Since the scale on the z-axis in our plot is effect size, the choice of scale values says somerthing
about what we are expecting our effect sizes to be like. The wider the scale value, the bigger
we are expecting our effect sizes to be.

Our effect size in the PlantGrowth data was 0.95 so well within the area covered by the medium
scale Cauchy, much more of that curve falls within the -0.95 to +0.95 effect size range than
the other two, so we might think that one would be a better fit. That’s why it’s the default,
it’s a good fit for generally found effect sizes.

2.7.2 The effect of changing the prior

As an exercise to help us understand the importance of the prior and explicitly NOT a guide
to maximising the odds in favour of one model over another. Let’s look at how changing the
scale via the rscale parameter in ttestBF () affects the odds of our one sided model.

ttestBF (formula = weight ~ group, data = pg_small, nulllnterval=c(0, Inf), rscale="medium")

Bayes factor analysis

[1] Alt., r=0.707 0<d<Inf : 3.387166 +0%
[2] Alt., r=0.707 !(0<d<Inf) : 0.1622109 0%

Against denominator:
Null, mul-mu2 = 0

Bayes factor type: BFindepSample, JZS

ttestBF (formula = weight ~ group, data = pg_small, nulllnterval=c(0, Inf), rscale="wide")
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Bayes factor analysis

[1] Alt., r=1 0<d<Inf 1 3.22134  +0%
[2] Alt., r=1 !(0<d<Inf) : 0.1189759 +0.02%

Against denominator:
Null, mul-mu2 = 0

Bayes factor type: BFindepSample, JZS

ttestBF (formula = weight ~ group, data = pg_small, nulllnterval=c(0,

Bayes factor analysis

[1] Alt., r=1.414 0<d<Inf : 2.857414 0%
[2] Alt., r=1.414 !1(0<d<Inf) : 0.08596477 +0.05%

Against denominator:
Null, mul-mu2 = 0O

Bayes factor type: BFindepSample, JZS

Inf), rscale="ultrawid

Indeed we do get stronger odds for the alternative hypothesis in the medium scale than the
others. Note that it isn’t wise to go Bayes Factor fishing by post-hoc selecting the prior in
order to maximise the Bayes Factor. This example was an exercise to show that prior selection

is important.

i Roundup

that is analogous to t-tests.
e We can compare different hypotheses

by the data

we assume to be normal

e Bayes Factor t-tests allow us to directly compare hypothesis about data in a way

e The interpretation of a BayesFactor tells us which of the hypotheses are favoured

o Prior selection is important, but ttestBF () restricts us to sensible options for data
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3 Bayes Factor ANOVA

3.1 About this chapter

1. Questions

e How can I do an ANOVA?
2. Objectives

e Understand multiplicity is not a problem for Bayes Factors
3. Keypoints

e The package simplebf automates Bayes Factor t-tests for many samples

3.2 The issue of multiplicity in Frequentism and Bayesianism

The ANOVA is often seen to be a catch-all test that can be used for an experiment that has
more than two samples in it. Experimenters often understand this to be true on the basis that
‘you shouldn’t do t-tests for more than two samples by repeating the t-test’. This is quite true
and is a strategy for avoidance of the problem of multiplicity.

Multiplicity or multiple testing occurs when we do lots of tests one after the other, in a batch.
The more we do, the more likely we are to make an error in our conclusions (not in our
working). This happens in Frequentist statistical tests because the p-value expresses a fixed
error rate that we are happy to accept.

Recall that the t-test has two hypotheses (of which we test just one)

and we set a level at which would reject H, usually p < 0.05. The p reflects the proportion of
times that the difference observed is seen in the null model by chance (so we see the difference
1 in 20 times by chance), in other words in a proportion of 0.95 of times we would reject the
null correctly. Which is fine for just one comparison.
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If we do more than one test we must multiply these probabilities together, giving 0.95%0.95 =
0.9025. This is catastrophic, by doing just two tests we reduce the proportion of times we
choose the correct hypothesis to 0.9025, down from 19/20 to 18/20, we make twice as many
mistakes! For more tests this gets worse.

Frequentist statistics have lots of corrections for this sort of problem and the ANOVA post-hoc
tests are in part a way of doing that. The good news for those using Bayes Factors is that this
problem does not exist. Because we don’t have a fixed error rate, it doesn’t get bigger when
we do more tests. We are free to do as many hypothesis comparisons as we wish.

3.3 Automating BayesFactor::ttest() for many comparisions

As there isn’t a need for a Bayes Factor analogue to the ANOVA and post-hoc tests, we can
just use the t-test analogue over and over again. If we have a multiple sample dataset we just
need a book-keeping method to pull out the samples of interest.

Let’s draft one with dplyr and the Plant Growth data set.

library(dplyr)
library(BayesFactor)

small_df <- PlantGrowth %>
filter(group %in% c("ctrl", "trti")) %>%
droplevels()

ttestBF (formula = weight ~ group, data = small_df)

This pattern helps you extract the pairs of samples you need, though you would need to repeat
it every time you wanted to analyse a new pair. A convenience function for the simple case that
allows us to do BayesFactor: :ttestBF() for all pairs in a specified column in a dataframe
exists in the package simplebf. It works like this:

library(simplebf)

result <- allpairs_ttestbf (PlantGrowth,
group_col = "group", data_col = "weight",
rscale = "medium",
h 1 = "test_greater_than_control")

knitr::kable(result, digits = 4)
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control _gréegd growp 0 h 1 BayesFactwdds__h stimmary

trtl ctrl ctrl equal ctrl greater 1.0834 1:1.0834 Anecdotal evidence for
to trtl than trtl H_ 1 compared to H_0

trt2 ctrl ctrl equal ctrl greater 0.1622 1:0.1622Substantial evidence for
to trt2 than trt2 H_ 0 compared to H_1

ctrl trtl trtl equal  trtl greater 0.2167 1:0.2167 Substantial evidence for
to ctrl than ctrl H_0 compared to H_1

trt2 trtl trtl equal  trtl greater 0.1363 1:0.1363 Substantial evidence for
to trt2 than trt2 H_ 0 compared to H_1

ctrl trt2 trt2 equal  trt2 greater 3.3872  1:3.3872Substantial evidence for
to ctrl than ctrl H_ 1 compared to H_0

trtl trt2 trt2 equal  trt2 greater 12.6445 1:12.644%trong evidence for H_ 1
to trtl than trtl compared to H_0

The results are pretty easy to read. Note we can set rscale values as in the ttestBF() and we
can choose one of three values for H; test_greater_than_control, test_less_than_control
and test_not_equal_to_control.

1 Roundup

e Bayes Factors do not need multiple hypothesis corrections
e simplebf is a package for automating the comparison of all groups in a single
variable in a tidy dataframe
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4 Bayes Factor on Contingency Tables and
Proportions

4.1 About this chapter

1. Questions

o How can I do a categoric count based x? or proportional test with Bayes Factors?
2. Objectives

o Perform x? on contingency tables of any size
3. Keypoints

e BayesFactor and simplebf provide functions and automations for categorical count
or frequency data
e These are useful for HR scoring data

The BayesFactor package has some functions for performing other types of tests and returning
a Bayes Factor. In this section we will briefly look at these.

4.2 Bayes Factor \?

A common question is whether proportions of counted things or frequency is different between
samples. The one we typically learn first as biologists is Mendel’s pea data that led to his
genetic insights, like this 2x2 table for flower colour (purple or white). Note that we have the
counts of flower colour that were observed and expected counts that would come from a 3:1
Mendelian segregating cross.

mendel _data

P W
observed 459 141
expected 450 150
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The x? test is the classical frequentist test performed to determine differences in proportions
in a contingency table, and there is an equivalent Bayesian method in BayesFactor. We can
run our data through the function contingencyTableBF() very easily, but it does need the
data to be an R matrix object, not the more typical dataframe. We can change that easily
with as.matrix (), then run the function.

The arguments are important: fixedMargin describes whether the variable of interest is in
the rows or columns of the table - here it is in the columns so we use cols; sampleType
describes what the function should do in the Bayesian sampling process as it runs. This is
highly technical and out of scope for what we want to discuss, so I'm going to gloss over it.
The function documentation has more information if you want it (?contingencyTableBF) the
option used here indepMulti is a good one to start with.

mendel matrix <- as.matrix(mendel_data)

library (BayesFactor)
contingencyTableBF (mendel_matrix, sampleType = "indepMulti", fixedMargin='cols')

Bayes factor analysis

[1] Non-indep. (a=1) : 0.1011097 =0%

Against denominator:
Null, independence, a =1

Bayes factor type: BFcontingencyTable, independent multinomial

The hypotheses that are tested in this example are fixed and simple ones. Strictly H is that
the proportions in the table are equal and H, is that the proportions are not equal. So in effect
the whole table is tested to see whether the observed counts are different to the expected counts.
Here we see that the odds are 1:0.101 against H; so the conclusion is that the proportions are
equal, that is our observed flower colour proportions match the expected.

There isn’t a way to use different H;’s in the way that we did with the Bayes Factor t-test, so
we can’t test the explicit hypothesis that one is bigger (or smaller than the other).

4.2.1 Converting a dataframe to a contingency table

In most of our work we’ve used tidy data (or case based data) in dataframes. The function
we just learned uses a contingency table in a matrix, not a dataframe. Sometimes too, we
will want to make a contingency table to see it. We can make a contingency table out of a
dataframe with the table function, we just have to select the columns we want using the $
notation.

28



hr_df

# A tibble: 9 x 3
strain replicate score
<chr> <dbl> <dbl>
control 1
mild

deadly
control
mild

deadly
control
mild

deadly

© 0 ~N OO WN
WWwwWNoNN R R
WWER D WD W

hr_cont_table <- table(hr_df$score,hr_df$strain)

4.2.2 Bigger contingency tables

Sometime we’ll have a contingency table of counts that is larger than 2 x 2 IE we have more
than two samples and more than two levels of a variable. For example we might have this HR
scoring table.

hr_table

control deadly mild
2 0 0

S W N -

1 0 0
0 1 3
0 2 0

As we can see it shows an HR score in the rows and different strains in the columns. The
numbers represent the count of times each score was seen in three replicated experiments.
Because it’s a contingency table the replicates are merged in together. It is important therefore
that the same amount of sampling was done in each strain.

Here we would want to compare the two basic hypotheses of whether the proportions of
observed scores are different between the strains are the same or not. Let’s go ahead and do
that with contingencyTableBF ()
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contingencyTableBF (hr_table, sampleType = "indepMulti", fixedMargin = "cols")

Bayes factor analysis

[1] Non-indep. (a=1) : 11.55 0%

Against denominator:
Null, independence, a =1

Bayes factor type: BFcontingencyTable, independent multinomial

We get a clear answer, the Bayes Factor strongly favours the hypothesis that the proportions
of scores across strains are not equal. Which is nice but it doesn’t go far enough - it doesn’t
tell us which are bigger than others and whether the conclusion applies to all the possible
pairings of strains. This is the same problem we had with the Bayes Factor t-test and the
solution is the same. We can just pull out each pair of strains and compare them one pair at
a time. All we need is a book-keeping method to do this. The library simplebf contains one,
so let’s use that.

We can use the allpairs_proportionbf () function to get a data frame of Bayes Factors.
If you pass this function a dataframe it will make the contingency table for you. You must
specify which columns to use for the group and the counts. For easy reading we’ll send the
output to the knitr: :kable() function.

library(simplebf)
allpairs_proportionbf (hr_df,
group_col = "strain", count_col = "score",
sample_type = "indepMulti") %>%
knitr: :kable()

control_testugdoup h 1 BayesFadds_dunimary
control mild mild proportions mild proportions not  5.6000 1:5.6 Substantial
equal to control equal to control evidence for H_ 1
proportions proportions compared to H_0
control deadly deadly proportions deadly proportions 4.2000 1:4.2 Substantial
equal to control not equal to control evidence for H_ 1
proportions proportions compared to H_0
mild  deadly deadly proportions deadly proportions 2.1875 1:2.18necdotal
equal to mild not equal to mild evidence for H_ 1
proportions proportions compared to H_0
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So we get a nice set of Bayesian Hypothesis test for proportion or contingency table data on
our HR experiment.

i Roundup

« Bayes Factors can be used for proportion tests like the x?
o The BayesFactor and simplebf packages are useful tools implementing these
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Prerequisites

Knowledge prerequisites
There are no specific knowledge prerequisites for this book but it will be very helpful if you

have read and worked through the ggplot, Intro to Stats and Estimation Statistics
books and are familiar with R use.

Software prerequisites

You need to install the following stuff for this book:

1. R
2. RStudio
3. Some R packages: devtools, tidyverse and BayesFactor and simplebf

Installing R

Follow this link and install the right version for your operating system https://www.stats.bris.
ac.uk/R/

Installing RStudio

Follow this link and install the right version for your operating system https://www.rstudio.
com/products/rstudio/download/
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Installing R packages in RStudio

Standard packages

In the RStudio console, type

install.packages(c("tidyverse", "devtools", "BayesFactor"))
and these packages should install. Once that is done, type
devtools::install_github("danmaclean/simplebf")

to install the final package
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R Fundamentals

About this chapter

1. Questions:
e How do I use R?
2. Objectives:

e Become familiar with R syntax
e Understand the concepts of objects and assignment
o Get exposed to a few functions

3. Keypoints:

¢ R’s capabilities are provided by functions
e R users call functions and get results

Working with R

In this workshop we’ll use R in the extremely useful RStudio software. For the most part we’ll
work interactively, meaning we’ll type stuff straight into the R console in RStudio (Usually
this is a window on the left or lower left) and get our results there too (usually in the console
or in a window on the right).

Panels like the ones below mimic the interaction with R and first show the thing to type into
R, and below the calculated result from R.

Let’s look at how R works by using it for it’s most basic job - as a calculator:

3 +5

(1] 8
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12 * 2

[1] 24

1/3

[1] 0.3333333

12 x 2

[1] 24

Fairly straightforward, we type in the expression and we get a result. That’s how this whole
book will work, you type the stuff in, and get answers out. It’ll be easiest to learn if you go
ahead and copy the examples one by one. Try to resist the urge to use copy and paste. Typing
longhand really encourages you to look at what you’re entering.

As far as the R output itself goes, it’s really straightforward - its just the answer with a [1]
stuck on the front. This [1] tells us how many items through the output we are. Often R will
return long lists of numbers and it can be helpful to have this extra information.

Variables

We can save the output of operations for later use by giving it a name using the assignment
symbol <-. Read this symbol as ‘gets’, so x <- 5 reads as ‘x gets 5. These names are called
variables, because the value they are associated with can change.

Let’s give five a name, x then refer to the value 5 by it’s name. We can then use the name in
place of the value. In the jargon of computing we say we are assigning a value to a variable.

R = B

(1] 10
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[1] 15

This is of course of limited value with just numbers but is of great value when we have large
datasets, as the whole thing can be referred to by the variable.

Using objects and functions

At the top level, R is a simple language with two types of thing: functions and objects. As a
user you will use functions to do stuff, and get back objects as an answer. Functions are easy
to spot, they are a name followed by a pair of brackets. A function like mean() is the function
for calculating a mean. The options (or arguments) for the function go inside the brackets:

sqrt (16)

(1] 4

Often the result from a function will be more complicated than a simple number object, often
it will be a vector (simple list), like from the rnorm() function that returns lists of random
numbers

rnorm(100)
[1] 0.016462236 -0.067227114 1.275945141 0.074917119 -1.888627555
[6] -1.393397693 1.084217560 -1.571466365 0.136622191 -0.115198118
[11] -0.187390639 0.463747416 -0.181248005 -0.379680700 0.555015628
[16] -0.927346830 -0.742599448 0.597151303 -2.123336682 0.349818432
[21] -0.573431209 -0.332480783 -1.364223819 0.361332577 0.358422704
[26] -0.003078206 -1.035649220 -1.643442351 0.355391303 -1.809201261
[31] 1.715503036 -0.937862657 -0.158335281 1.117304153 -0.335464860
[36] 1.836347205 -0.805181369 1.002967854 0.401403287 -0.556871423
[41] 0.429921580 0.272820808 0.651281302 -0.943411733 1.552192717
[46] 0.640611833 1.687426390 0.018507821 0.244251753 -1.148090969
[61] -0.804283573 1.782516444 -0.826521766 -0.020082032 1.253940965
[66] 0.083781682 1.137014675 0.704295572 0.668589925 1.735597188
[61] -0.171815761 -0.551948376 1.523139435 -0.062948817 1.223807298
[66] -0.295273087 0.688572498 -0.588642576 —-1.283534533 -0.318113641
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[71] -1.350438149 -0.204627078 0.430765033 -0.718295834 -1.186648853
[76] -1.019526679 -0.162495144 1.763888517 -0.030703047 -1.205553151
[81] 0.609815807 -1.849825268 0.538986356 -0.559927751 0.528043359
[86] -0.680607902 1.049143122 0.693643153 0.306646235 -0.766900649
[91] 0.426951421 0.416344956 1.079778487 0.351290386 -1.401048465
-0

[96] -0.683954669 0.156395424 .452664433 -0.711574704 -1.004393762

We can combine objects, variables and functions to do more complex stuff in R, here’s how we
get the mean of 100 random numbers.

numbers <- rnorm(100)
mean (numbers)

[1] -0.1171882

Here we created a vector object with rnorm(100) and assigned it to the variable numbers. We
than used the mean () function, passing it the variable numbers. The mean () function returned
the mean of the hundred random numbers.

Dataframes

One of the more common objects that R uses is a dataframe. The dataframe is a rectangular
table-like object that contains data, think of it like a spreadsheet tab. Like the spreadsheet,
the dataframe has rows and columns, the columns have names and the different columns can
have different types of data in. Here’s a little one

names age score
1 Guido 24 68.09373
2 Marty 45 47.84005
3 Alan 11 60.84998

Usually we get a dataframe by loading in data from an external source or as a result from
functions, occasionally we’ll want to hand make one, which can be done with various functions,
data.frame being the most common.

data.frame(
names = c("Guido", "Marty", "Alan"),
age = c(24,45,11),
score = runif(3) * 100
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Packages

Many of the tools we use in will come in R packages, little nuggets of code that group related
functions together. Installing new packages can be done using the Packages pane of RStudio
or the install.packages() function. When we wish to use that code we use the library()
function

library(somepackage)

Using R Help

R provides a command, called ? that will display the documentation for functions. For
example ?mean will display the help for the mean() function.

?mean

As in all programming languages the internal documentation in R is written with some as-
sumption that the reader is familiar with the language. This can be a pain when you are
starting out as the help will seem a bit obscure at times. Don’t worry about this, usually the
Examples section will give you a good idea of how to use the function and as your experience
grows then the more things will make more sense.

1 Roundup

* R is an excellent and powerful statistical computing environment

@ For you to do

Complete the interactive tutorial online https://danmaclean.shinyapps.io/r-start

Wagenmakers, E. J., T. Wetzels, D. Borsboom, and H. L. J van der Maas. 2011. “Why Psychol-
ogists Must Change the Way They Analyze Their Data: The Case of Psi: Comment on Bem
(2011).” Journal of Personality and Social Psychology 100: 426-32. https://doi.org/https:
//doi.org/10.1037/2a0022790.
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